Passive radar systems, which utilize broadcast and navigation signals as sources of opportunity, have attracted significant interests in recent years due to their low cost, covertness, and the availability of different illuminator sources. In this paper, we propose a novel method for synthetic aperture imaging in multi-static passive radar systems based on a group sparse Bayesian learning technique. In particular, the problem of imaging sparse targets is formulated as a group sparse signal reconstruction problem, which is solved using a complex multi- task Bayesian compressive sensing (CMT-BCS) method to achieve a high resolution. The proposed approach significantly improves the imaging resolution beyond the range resolution. Compared to the other group sparse signal reconstruction methods, such as the block orthogonal matching pursuit (BOMP) and group Lasso, the CMT-BCS provides significant performance improvement for the reconstruction of sparse targets in the redundant dictionary with high coherence. Simulations results demonstrate the superior performance of the proposed approach.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.