What is the amount of ionizing energy incident on exoplanet atmospheres from their host stars? What is the relationship between white-light flares and this ionizing energy? These are key questions required to link our current archive of hundreds of stellar whitelight flares to the ionizing radiation released during them, and the ramifications of those flares on the survival of exoplanetary atmospheres, particularly for planets orbiting within the habitable zones of low-mass stars. The Small NASA Optical Ultraviolet Telescope (SNOUT) is a proposed Pioneers mission comprised of two co-pointing telescopes: one optimized for EUV wavelengths (comprised of three separate EUV segments) and one for visible wavelengths. SNOUT is designed to measure the quiescent extreme-UV (EUV) emission for 30 mow-mass stars (0.3 - 1 solar masses), covering a range of ages, in three EUV bandpasses. The combined instrument is housed in an ESPA-Grande spacecraft and will launch into low Earth orbit for a one-year baseline mission. SNOUT has a substantial educational and early-career mentoring component; early-career scientists and engineers comprise more than half of the team, including key leadership roles.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.