By the application of electromagnetic fields onto an homeotropic nematic liquid crystal cell it is possible to induce vortices, which are particle-type defects with topological charge. The dynamics of the vortices is such that topological charge of the system is conserved, so these defects are always induced in pairs that annihilate after a short amount of time. Using a magnetic ring it is possible to induce a stable vortex triplet that allows the study of its dynamics, which is of an oscillatory kind when a low-frequency voltage is applied. Experimentally, we determine the region of parameters where the vortex triplet is stable, unstable, or becomes a lattice of vortices. We propose an amplitude equation which allow us to describe the vortex dynamics, and numerical simulations show agreement with experimental observations.
The interaction of light beams with helical objects allows the emergency of the optical vortices. Understanding and manipulating the dynamics of helical defects can generate versatile sources of optical vortex beams. Using a magnetic ring, matter vortices can be trapped on a nematic liquid crystal cell. By applying a low-frequency voltage, we observe oscillatory rotating and beating matter vortices. Experimntally, we determine the region of parameters where the dancing vortices are observed. The amplitude equation allows describing the dancing vortices, which presents similar behaviors to those observed experimentally.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.