Images acquired by computer vision systems under low light conditions are characterized by the existence of noises. As a rule, it results in decreasing object detection rate. To increase the object detection rate, the proper image preprocessing algorithm is needed. The paper presents the image denoising method based on bilateral filtering and wavelet thresholding. The boosting method for object detection that uses the modified Haar-like features which include Haar-like features and symmetrical local binary patterns are proposed. The proposed algorithm allows increasing object detection rate in comparison with Viola-Jones method for a case of face detection task. The algorithm was tested on the two image sets, Yale B and the proprietary – VNTU-458.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.