Identifying cross-sectional and longitudinal correspondence in the abdomen on computed tomography (CT) scans is necessary for quantitatively tracking change and understanding population characteristics, yet abdominal image registration is a challenging problem. The key difficulty in solving this problem is huge variations in organ dimensions and shapes across subjects. The current standard registration method uses the global or body-wise registration technique, which is based on the global topology for alignment. This method (although producing decent results) has substantial influence of outliers, thus leaving room for significant improvement. Here, we study a new image registration approach using local (organ-wise registration) by first creating organ-specific bounding boxes and then using these regions of interest (ROIs) for aligning references to target. Based on Dice Similarity Coefficient (DSC), Mean Surface Distance (MSD) and Hausdorff Distance (HD), the organ-wise approach is demonstrated to have significantly better results by minimizing the distorting effects of organ variations. This paper compares exclusively the two registration methods by providing novel quantitative and qualitative comparison data and is a subset of the more comprehensive problem of improving the multi-atlas segmentation by using organ normalization.
Image registration has become an essential image processing technique to compare data across time and individuals. With the successes in volumetric brain registration, general-purpose software tools are beginning to be applied to abdominal computed tomography (CT) scans. Herein, we evaluate five current tools for registering clinically acquired abdominal CT scans. Twelve abdominal organs were labeled on a set of 20 atlases to enable assessment of correspondence. The 20 atlases were pairwise registered based on only intensity information with five registration tools (affine IRTK, FNIRT, Non-Rigid IRTK, NiftyReg, and ANTs). Following the brain literature, the Dice similarity coefficient (DSC), mean surface distance, and Hausdorff distance were calculated on the registered organs individually. However, interpretation was confounded due to a significant proportion of outliers. Examining the retrospectively selected top 1 and 5 atlases for each target revealed that there was a substantive performance difference between methods. To further our understanding, we constructed majority vote segmentation with the top 5 DSC values for each organ and target. The results illustrated a median improvement of 85% in DSC between the raw results and majority vote. These experiments show that some images may be well registered to some targets using the available software tools, but there is significant room for improvement and reveals the need for innovation and research in the field of registration in abdominal CTs. If image registration is to be used for local interpretation of abdominal CT, great care must be taken to account for outliers (e.g., atlas selection in statistical fusion).
Abdominal segmentation on clinically acquired computed tomography (CT) has been a challenging problem given the inter-subject variance of human abdomens and complex 3-D relationships among organs. Multi-atlas segmentation (MAS) provides a potentially robust solution by leveraging label atlases via image registration and statistical fusion. We posit that the efficiency of atlas selection requires further exploration in the context of substantial registration errors. The selective and iterative method for performance level estimation (SIMPLE) method is a MAS technique integrating atlas selection and label fusion that has proven effective for prostate radiotherapy planning. Herein, we revisit atlas selection and fusion techniques for segmenting 12 abdominal structures using clinically acquired CT. Using a re-derived SIMPLE algorithm, we show that performance on multi-organ classification can be improved by accounting for exogenous information through Bayesian priors (so called context learning). These innovations are integrated with the joint label fusion (JLF) approach to reduce the impact of correlated errors among selected atlases for each organ, and a graph cut technique is used to regularize the combined segmentation. In a study of 100 subjects, the proposed method outperformed other comparable MAS approaches, including majority vote, SIMPLE, JLF, and the Wolz locally weighted vote technique. The proposed technique provides consistent improvement over state-of-the-art approaches (median improvement of 7.0% and 16.2% in DSC over JLF and Wolz, respectively) and moves toward efficient segmentation of large-scale clinically acquired CT data for biomarker screening, surgical navigation, and data mining.
Abdominal organ segmentation with clinically acquired computed tomography (CT) is drawing increasing interest in the medical imaging community. Gaussian mixture models (GMM) have been extensively used through medical segmentation, most notably in the brain for cerebrospinal fluid / gray matter / white matter differentiation. Because abdominal CT exhibit strong localized intensity characteristics, GMM have recently been incorporated in multi-stage abdominal segmentation algorithms. In the context of variable abdominal anatomy and rich algorithms, it is difficult to assess the marginal contribution of GMM. Herein, we characterize the efficacy of an a posteriori framework that integrates GMM of organ-wise intensity likelihood with spatial priors from multiple target-specific registered labels. In our study, we first manually labeled 100 CT images. Then, we assigned 40 images to use as training data for constructing target-specific spatial priors and intensity likelihoods. The remaining 60 images were evaluated as test targets for segmenting 12 abdominal organs. The overlap between the true and the automatic segmentations was measured by Dice similarity coefficient (DSC). A median improvement of 145% was achieved by integrating the GMM intensity likelihood against the specific spatial prior. The proposed framework opens the opportunities for abdominal organ segmentation by efficiently using both the spatial and appearance information from the atlases, and creates a benchmark for large-scale automatic abdominal segmentation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.