KEYWORDS: Laser ablation, Laser processing, Parabolic mirrors, Temperature metrology, Coating, Signal processing, Field programmable gate arrays, Signal to noise ratio, Indium gallium arsenide
Laser material micro-processing with high repetition frequencies of laser pulses is able to initiate heat accumulation effects that can decrease processing rate and quality. In order to gain deeper insights into these effects, a temperature measurement system with nanosecond time resolution was developed using infrared detector and a set of parabolic mirrors. For measurement in more industrially relevant processes on larger areas, alternative configurations were developed: measurement through the scan head and multifocus ellipsoidal mirror. This work is initially focused on comparison of advantages and limitations of the developed measurement configurations by signal to noise ratio, field of view and measurable temperature range. The measurement systems were then used for the analysis of polygon scanner based high-speed laser surface texturing of steel and ceramics substrates as a preparation method for thermal spraying of coatings. GHz burst femtosecond laser ablation was analyzed and long-time process monitoring using FPGA hardware analysis was developed and performed for the laser texturing process.
The recent developments in high-speed laser machining combine high-average power lasers with ultrafast beam deflection systems.1 However, when using ultrashort pulses at megahertz pulse repetition frequencies the incoming laser beam may interact with the plasma/particle ablation plume that is due to the very short time intervals between the impinging megahertz-repetitive pulses. Thereby, the subsequently irradiated pulses will either be reflected, absorbed and/or scattered by the still existent plasma/particle plume as induced by the previously irradiated pulse(s). This shielding of the incoming laser beam is adversely affecting material ablation and can potentially be avoided when the beam is ultrafast moving in front of the emerging plasma/particle plume. For the real-time analysis of such fairly unknown processing regimes, a pump-probe shadowgraph imaging technique was used to visualize laser materials interaction in high-speed ultrashort pulse laser machining. The pump laser source supplied a beam of λ=1030 nm, ƬH =600 fs and 48MHz maximum pulse repetition frequency for material ablation. A diode laser system provided the probe beam of λ=688 nm and ƬH =13 ns. The pump and the probe beam could be electronically delayed within a time frame of up to 10 µs. Sequences of shadowgraphs will be presented to visualize plasma/ablation plume expansion for providing unique insights into high-pulse repetition frequency ultrashort pulse laser materials interactions at ultrafast laser beam movements above 250m/s. The shadowgraphs reveal that the form of the emerging plasma/particle plumes is influenced by the laser beam moving speed. The plumes vary in their density and structure from clearly distinguishable at highest speed, through smoothly detached to be turbulent. In addition, it is shown on the shadowgraphs material ejection takes place at the time when the ultrafast scanned laser beam moved away from the initial irradiation area.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.