KEYWORDS: General packet radio service, Data modeling, Ground penetrating radar, Electromagnetism, Antennas, Inverse problems, Electromagnetic radiation, Magnetism, Wavelets, Radio propagation
Ground Penetrating Radar is a geophysical method based on the propagation of electromagnetic waves for the prospecting of subsurface layers. The characterization of the subsurface from data obtained at the surface is an inverse process. Full Waveform Inversion (FWI) is an iterative method that requires: a cost function to measure the misfit between observed and modeled data; a wave propagator to compute the modeled data; and an initial parameters model that is updated, at each iteration step, until reaches an acceptable decrement of the cost function. FWI has a high computational cost because use the electromagnetic wave equation is discretized using Finite Difference in Time Domain. Although shielded antenna can be configured in multi-channel mode to allow large wavenumbers, this increases the budgets of the acquisitions, the processing time and the human resource in the data collection in the field. Therefore, in this paper a methodology to obtain a simultaneous inversion of permittivity, permeability, and conductivity from 2D GPR data using FWI in time domain to short-offset is proposed. The proposed methodology takes advantage of Graphical Processing Units (GPUs), through the programming language CUDA-C developed by NVIDIA, to reduce the execution time. The FWI reaches the best result (measured as the lowest cycle skipping values % CS) when there is no conductivity in the numerical experiments. This paper shows that the conductivity effect has a bigger negative impact during the inversion process than the Full Waveform inversion of noisy data.
Full waveform inversion of Ground Penetrating Radar (GPR) data is a promising strategy to estimate quantitative characteristics of the subsurface such as permittivity and conductivity. In this paper, we propose a methodology that uses Full Waveform Inversion (FWI) in time domain of 2D GPR data to obtain highly resolved images of the permittivity and conductivity parameters of the subsurface. FWI is an iterative method that requires a cost function to measure the misfit between observed and modeled data, a wave propagator to compute the modeled data and an initial velocity model that is updated at each iteration until an acceptable decrease of the cost function is reached. The use of FWI with GPR are expensive computationally because it is based on the computation of the electromagnetic full wave propagation. Also, the commercially available acquisition systems use only one transmitter and one receiver antenna at zero offset, requiring a large number of shots to scan a single line.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.