A nanoslit array is introduced on the silicon waveguide, and the phase difference is controlled by the slit width to satisfy the function of the focusing lens. If keep the designed width and depth of the slit in accordance with the focusing effect unchanged, when the incident wavelength changes, the focal position must change accordingly, and the dispersion effect is significant. In order to achieve the achromatic effect, the refractive index of the surrounding medium is changed while changing the wavelength. Finally, the refractive index of the surrounding medium which can keep the focal length constant at the wavelength of 1550-1950nm is obtained, and the equation that the change of the refractive index and the wavelength of the medium makes the focal length constant is obtained. The achromatic effect can be effectively achieved, and applications range of achromatic metalens from imaging in optical communications to telescopes in the astronomical field.
We introduce phase-change material Ge2Sb2Te5 (GST) into metal–insulator–metal (MIM) waveguide systems to realize chipscale plasmonic modulators and switches in the telecommunication band. Benefitting from the high contrast of optical properties between amorphous and crystalline GST, the three proposed structures can act as reconfigurable and nonvolatile modulators and switches with excellent modulation depth 14 dB and fast response time in subnanosecond while possessing small footprints, simple frameworks, and easy fabrication. We provide solutions to design active devices in MIM waveguide systems and can find potential applications in more compact all-optical circuits for information processing and storage.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.