Extracellular enzymes, lignin peroxidase (LiP) and manganese peroxidase (MnP) from white rot fungus Phanerochaete chrysosoporium, have been shown to degrade various harmful organic compounds ranging from chlorinated compounds to polycyclic aromatic hydrocarbons (PAH) to polymeric dyes. The problems in using immobilized enzymes for biocatalysis/bioremediation are their loss of activity and long-term stability. To address these issues, adsorption by layer-by-layer assembly (LbL) using polyelectrolytes, entrapment using gelatin, and chmisorption using coupling reagents have been investigated. In order to increase surface area for catalysis, porous silicon, formed by electrochemical etching of silicon, has been considered. The efficacy of these extremely stable nanoassemblies towards degradation of model organic compounds-veratryl alcohol (VA and 2,6-dimethoxyphenol (DMP)-in aqueous and in a mixture of aqueous/acetone has already been demonstrated. In parallel, we are pursuing development of sensors using these immobilized enzymes. Experiments carried out in solution show that NO can reversibly bind Ferri-LiP to produce a diamagnetic complex with a distinct change in its optical spectrum. NO can be photolyzed off to produce the spectrum of native paramagnetic ferri-species. Preliminary data on the detection of NO by LiP, based on surface plasmon resonance (SPR) using fiber optic probe, are presented.
Surface Plasmon Resonance (SPR) is an optical phenomenon which can be used for the sensitive detection of macromolecular interactions at a sensor surface by detecting small changes in refractive index resulting from adsorbed species. Previous work toward fiber-optic SPR sensors has employed metal films sputtered or evaporated onto waveguides. In this work, a novel nanofabrication approach using a combination of self-assembled monolayers (SAMs) and electrostatic layer-by-layer (LbL) self assembly was investigated toward precise deposition of metal nanomaterials onto fibers, which could enable excellent control over surface properties as well as provide an enhanced plasmon signal due to the roughened metal surfaces. Furthermore, nanoassembly allows production of nanocomposite materials that may possess attractive optical properties. To study this possibility, ultrathin films with architecture {Au/polymer}n (n=1-10) were deposited on flat silica substrates, then on optical fibers. Physical measurements of deposited mass were performed with quartz crystal microbalance (QCM). The influence of particle size, number of layers, and distance from surface on the magnitude of optical signals was investigated by measuring the absorption spectrum for each configuration. In addition, sequential and simultaneous bimetallic (Au/Ag) film layering and testing was also completed to assess the effect of nanocomposite metal films on SPR signals. Fluorescent anti-Immunoglobulin G (IgG) antibody was deposited on the outside surface, which was then exposed to IgG for observation of shifting resonance peak due to target binding. The results show that nanoassembly is a promising approach to precise yet cost-effective fabrication of optical biosensors.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.