FTIR spectroscopy holds significant untapped potential for materials analysis and laser characterization, but new developments are limited by the availability of simple, universal, and scalable components. Addressing this challenge, pyroelectric receivers PR No1 IR and PR No2 IR, and detectors ALUT3151 with sub-pixel binning and Diff ALUT3151 with additional true differential output have been developed. All models are based on thin LiTaO3, cover a wide wavelength range, do not require cooling, and operate at high Detectivity (D*) in the kHz range while being rugged and linear over four orders of IR flux magnitude. In this paper, we will focus on recent results towards a people´s-FTIR with reduced TTWS (Time Towards Working Setup). Besides the detector, the thermal source and the beamsplitter have been identified as critical components.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.