The ‘Reflecting Photonics’ show garden was exhibited at the 2015 Royal Horticultural Society (RHS) Flower Show in Tatton Park, UK, to celebrate the International Year of Light and Light-based Technologies. Elks-Smith Garden Design alongside landscapers ‘Turf N’ Earth’ collaborated with researchers, marketing and outreach professionals from the University of Southampton to design, construct and exhibit a photonics-themed garden. The garden and supporting exhibition united science and art to reach new audiences – particularly family groups alongside other key influencers to the young – and showcased the world-leading research in optical fibers at the university in an accessible manner. Researchers and a publicity professional, funded by the EPSRC Centre for Innovative Manufacturing in Photonics, developed an integrated approach to the event’s public engagement and marketing. The overarching aim was to influence a positive change in the attitude of the garden visitors towards physics and photonics, with additional focus on promoting careers for women in STEM. The show garden won an RHS Gold Medal award and the coveted ‘People’s Choice Award’ for the best large garden. The project subsequently won the South East England Physics Network Public Engagement Innovation Project Award. Approximately 80,000 visitors saw the garden, with a further three million television viewers on a popular British gardening show. There were also over 75,400 Tweet impressions on social media. This paper discusses the project aims, explores the design of the garden and its relationship with the research, describes the work of the public engagement team, and outlines the impact of the event.
Pulsed laser deposition (PLD) is an epitaxial growth technique capable of growing planar layers of crystals with thicknesses up to several 10's of microns. Crystal layers can be grown sequentially without intermediate sample conditioning allowing complicated structures, such as laser-active double-clad designs, to be routinely fabricated. We have recently demonstrated output powers of more than 16W and slope efficiencies of 70% for diode-bar end-pumped planar waveguide oscillators based on PLD Yb:YAG grown on YAG substrates. Here, we present our initial results on varying the growth conditions to tailor the stoichiometry, refractive index, and spectroscopic properties of PLD grown layers. This fine level of control, made possible by this technique, opens the way to bespoke and unique gain media for novel amplifier and lasers designs.
We present our recent advances in the use of pulsed laser deposition (PLD) to fabricate active gain elements for use as amplifiers and laser oscillators. Record output powers exceeding 16 W and slope efficiencies of 70% are reported for optimized epitaxial growth of Yb(7.5%):YAG on to YAG substrates. We show for the first time that the performance of PLD material can meet or even exceed that of materials grown by more established methods such as the Czochralski technique. Details of fabrication, characterization and laser performance are presented in addition to outlining expected future improvements.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.