We introduce a new method named as “weighted average method" to reduce atmospheric noise on the images in ground based mid-infrared observations. The main idea of this method is to find a sky frame corresponded to an object frame by superposition of several sky frames, instead of the conventional chop-and-nod observation technique. This is very useful not only for improving the observing efficiency but also for taking images of extended objects larger than the chopping throw. This method is also valid for reducing data taken by the chopping with insufficient frequency. In this paper we will report the details of the weighted average method and demonstrate its performance against practical observing data.
Anti-reflection (AR) is very important for high-throughput optical elements. The durability against cooling is
required for the AR structure in the cryogenic optics used for mid-infrared astronomical instruments. Moth-eye structure is a promising AR technique strong against cooling. The silicon lens and grism with the moth-eye structure are being developed to make high-throughput elements for long-wavelength mid-infrared instruments. A double-sided moth-eye plano-convex lens (Effective diameter: 33 mm, Focal length: 188 mm) was fabricated. By the transmittance measurement, it was confirmed that its total throughput is 1.7± 0.1 times higher than bare silicon lenses in a wide wavelength range of 20{45 μm. It suggests that the lens can achieve 83±5% throughput in the cryogenic temperature. It was also confirmed that the moth-eye processing on the lens does not modify the focal length. As for the grism, the homogeneous moth-eye processing on blaze pattern was realized by employing spray coating for the resist coating in EB lithography. The silicon grism with good surface roughness was also developed. The required techniques for completing moth-eye grisms have been established.
We report the restraint deformation and the corrosion protection of gold deposited aluminum mirrors for mid-infrared
instruments. To evaluate the deformation of the aluminum mirrors by thermal shrinkage, monitoring measurement of the
surface of a mirror has been carried out in the cooling cycles from the room temperature to 100 K. The result showed
that the effect of the deformation was reduced to one fourth if the mirror was screwed with spring washers.
We have explored an effective way to prevent the mirror from being galvanically corroded. A number of samples have
been prepared by changing the coating conditions, such as inserting an insulation layer, making a multi-layer and overcoating
water blocking layer, or carrying out precision cleaning before coating. Precision cleaning before the deposition
and protecting coat with SiO over the gold layer seemed to be effective in blocking corrosion of the aluminum. The SiO
over-coated mirror has survived the cooling test for the mid-infrared use and approximately 1 percent decrease in the
reflectance has been detected at 6-25 microns compared to gold deposited mirror without coating.
The MIMIZUKU is the first-generation mid-infrared instrument for the TAO 6.5-m telescope. It challenges to prove the origin of dust and the formation of planets with its unique capabilities, wide wavelength coverage and precise calibration capability. The wide wavelength coverage (2-38 μm) is achieved by three switchable cameras, NIR, MIR-S, and MIR-L. The specifications of the cameras are revised. A 5μm-cutoff HAWAII-1RG is decided to be installed in the NIR camera. The optical design of the MIR-L camera is modified to avoid detector saturation.
Its final F-number is extended from 5.2 to 10.5. With these modifications, the field of view of the NIR and MIR-L camera becomes 1.2’ × 1.2’ and 31” × 31”, respectively. The sensitivity of each camera is estimated based on the
revised specifications. The precise calibration is achieved by the “Field Stacker” mechanism, which enables the simultaneous observation of the target and the calibration object in different fields. The up-and-down motion
of the cryostat (~ 1 t), critical for the Field Stacker, is confirmed to have enough speed (4 mm/s) and position accuracy (~ 50 μm). A control panel for the Field Stacker is completed, and its controllers are successfully
installed. The current specifications and the development status are reported.
ANIR (Atacama Near InfraRed camera) is a near infrared camera for the University of Tokyo Atacama 1.0m telescope installed at the summit of Co. Chajnantor (5640m altitude) in northern Chile. The high altitude and the extremely low water vapor (precipitable water vapor:PWV=0.5mm) of the site enables us to perform observation of hydrogen Paschen alpha (Paα) emission line at 1.8751 μm. Since the first light observation in June 2009, we have succesfully obtained Paα narrow-band images of Galactic objects and near-by Galaxies. However, as there are many atmospheric absorption features within the wavelength range of the narrow-band filters which vary temporally due to change of PWV, it is difficult to calibrate the emission line flux accurately. Therefore, we have developed a new method to restore Paα emission-line flux from ground-based narrow-band filter imaging observations. First, average atmospheric transmittance within the narrow-band filter is derived using 2MASS stars in a image. Second, PWV is then estimated by comparing the transmittance with that calculated by atmospheric transmittance model software, ATRAN. Finally, the atmospheric transmittance at the wavelength of Paα emission-line is obtained from the model atmosphere corresponding to the obtained PWV. By applying this method to the data of nearby Luminous Infrared Galaxies obtained by ANIR, the emission line strength is estimated within the accuracy of 10% relative to that observed by HST/NICMOS. In this paper, we describe details of the calibration method and its accuracy.
TAO (The University of Tokyo Atacama Observatory) is planned to be constructed at the summit of Co. Chajnantor (5640 m altitude) in Chile. MIMIZUKU (Mid-Infrared Multi-field Imager for gaZing at the UnKnown Universe) is a mid-infrared imager (Field of View: 1' x 1'- 2' x 2') and spectrometer (Δλ/λ: 60-230) for the 6.5-m TAO telescope, covering the wavelength range of 2-38 μm. The MIMIZUKU has a unique equipment called Field Stacker (FS) which enables the simultaneous observation of target and reference object. The simultaneity is expected to improve photometric accuracy and to realize long-term monitoring observations. The development status of the MIMIZUKU is reported in this paper. The FS and the cryostat of the MIMIZUKU have been fabricated and under testing. The cold optics (550 mm x 750 mm x 2 floors) with 28 mirrors has been constructed. The mirrors were aligned with the positional precision of 0.1 mm and the angular precision of 0.1 deg. The evaluated optical performance is that the diffraction-limited image at λ <8 μm and the enough compact image (r <2 pix=0.22") at 2 λ ~2μm can be obtained. In the cold optics, the drive systems with backlash-less gears are employed and work well even in cryogenic environment. The grisms made with silicon and germanium have been fabricated by ultraprecision cutting. It was found that their surface roughness, grating constant, and blaze angle almost measure up to the designed values.
We have evaluated on-sky performances of a mid-infrared camera MAX38 (Mid-infrared Astronomical eXploerer)
on the miniTAO 1-meter telescope. A Strehl ratio at the N-band is estimated to be 0.7-0.8, and it reaches to 0.9
at the 37.7 micron, indicating that diffraction limited angular resolution is almost achieved at the wavelength
range from 8 to 38 micron. System efficiencies at the N and the Q-band are estimated with photometry of
standard stars. The sensitivity at the 30 micron cannot be exactly estimated because there are no standard stars
bright enough. We use the sky brightness instead. The estimated efficiencies at the 8.9, 18.7, and 31.7 micron
are 4%, 3%, 15% , respectively. One-sigma sensitivity in 1 sec integration of each filter is also evaluated. These
give good agreements with the designed values. Preliminary scientific results are briefly reported.
We present the current status of the development of the SPICA Coronagraph Instrument (SCI). SPICA is a next-generation
3-meter class infrared telescope, which will be launched in 2022. SCI is high-contrast imaging, spectroscopic
instrument mainly for direct detection and spectroscopy of extra-solar planets in the near-to-mid infrared wavelengths to
characterize their atmospheres, physical parameters and evolutionary scenarios. SCI is now under the international
review process. In this paper, we present a science case of SCI. The main targets of SCI, not only for direct imaging but
also for spectroscopy, are young to matured giant planets. We will also show that some of known exoplanets by ground-based
direct detection are good targets for SCI, and a number of direct detection planets that are suitable for SCI will be
significantly increased in the next decade. Second, a general design of SCI and a key technology including a new high-throughput
binary mask coronagraph, will be presented. Furthermore, we will show that SCI is potentially capable of
achieving 10-6 contrast by a PSF subtraction method, even with a telescope pointing error. This contrast enhancement
will be important to characterize low-mass and cool planets.
Thirty micron has remained one of unexplored frontiers of ground-based astronomical observations. Recent developments of extreme high sites including the Chajnantor TAO site (5,640m) enable us to access the this wavelengths from the ground. The expected transmittance seems clear enough for astronomical observations, but practical evaluations based on astronomical data has not been carried out yet. We have analyzed images obtained at the 31.7 micron with a mid-infrared camera MAX38 attached on a mini-TAO 1.0-meter telescope. 109 images of a star IRC+10420 and 11,114 images of the sky have been reduced. Clear relationship between the measured photocurrents and the perceptible water vapor has been found. Simple estimation of the photocurrents with of the ATRAN model gives good agreements with the measurements, indicating that the ATRAN model reproduce the atmospheric transmittance reasonably well. This also supports our assumption that the scaling factor 0.85 of the PVW at the Chajnantor TAO site to the PWV at the APEX. The average transmittance in the 31.7 micron is achieved to be over 20% when the PWV below 0.6 mm. In some cases clear degradation up to 10% in the transmittance is found. It may be caused by droplets of liquid or iced water with a size over 10 micron although the causes are not exactly specified. Diurnal time variations of the sky photocurrents are also investigated. The sky is sometimes bright and usually unstable in the twilight time. On the other hand the sky around the noontime does not show clear difference from the night sky. It may suggest that the observing condition at the thirty micron windows remain good even in the daytime.
Mid-infrared, 25 - 45 microns, is a very important wavelength region to investigate the physics of lower temperature
environments in the universe. There are few transparent materials in the range of mid-infrared except
silicon. However, the reflection on a silicon surface reaches 30 % because of its high refractive index (~3.4).
To apply silicon to mid-infrared astronomical instruments, we need a way of antireflection and have adopted
a moth-eye structure. This structure keeps durable under cryogenic environments, which is advantageous to
mid-infrared instruments. We have fabricated three samples of the moth-eye structure on plane silicon surfaces
by electron-beam photo-lithograph and reactive ion etching. The structures consist of many cones standing on
silicon surfaces. We have substantiated the transmittance of 96 % or higher in the wide range of 20 - 50 microns
and higher than 98 % at the maximum. The transmittance of moth-eye surfaces, however, is theoretically expected
as 100 %. We have examined the discrepancy between the transmittance of the theory and fabrications
with electromagnetic simulations. It has been revealed that shapes of the cones and gaps at the bottom of the
cones seriously affect the transmittance. We have estimated a few tolerances for manufacturing the moth-eye
structures achieving sufficient transmittance of nearly 100 %.
We have been developing high-throughput optical elements with the moth-eye structures for mid-infrared optical
systems. The moth-eye structures are optimized for the wavelength of 25-45μm. It consists of cones with a
height of 15-20μm arranged at an interval of 5μm. They are formed on silicon substrate by electron-beam
lithography and reactive ion etching. As a verification of the usefulness of moth-eye, a double-sided moth-eye
silicon plane was fabricated. It shows a transmittance increase of 60% compared with the unprocessed silicon
plane. As the first trial of the moth-eye optical element, two silicon lenses with single-sided moth-eye were
fabricated. One is a plane-convex lens with the moth-eye on the convex surface. The size of the moth-eye
formed region is 30 mm x 30 mm. Its focal length is 186 mm. The other one is a biconvex lens with moth-eye
formed region of Φ 33 mm and a focal length of 94 mm. Uniform moth-eye pattern was fabricated especially
for the second lens sample. Imaging test with the first sample showed that neither image degradation nor focal
length variation was induced by the moth-eye fabrication. As a step to grism with moth-eye, a moth-eye grating
sample was fabricated. The grating pattern (Grating constant: 124.9μm, Blaze angle: 4 deg) was successfully
fabricated with anisotropic etching. Moth-eye patterns were fabricated on the grating surface. Although the
resulted moth-eye was successfully fabricated in the most regions, some non-uniformity was found. It can be
attributed to unevenness of resist coating, and improvement of coating method is needed.
A metal mesh filter is appropriate to a band-pass filter for astronomy in the long mid-infrared between 25 and 40 μm,
where most of optical materials are opaque. The mesh filter does not require transparent dielectric materials unlike
interference filters because the transmission characteristics bare determined by surface plasmon-polariton (SPP)
resonances excited on a metal surface with a periodic structure. In this study, we have developed the mesh filters
optimized to atmospheric windows at 31.8 and 37.5 μm accessible from the Chajnantor site of 5,640 m altitude. First,
mesh filters made of a gold film of 2 μm thickness have been fabricated. Four identical film-type filters are stacked
incoherently to suppress leakages at stop-bands. The transmissions of the stacked filters have been measured to be 0.8 at
the peaks and below 1 x 10-3 at the stop-bands at 4 K. The ground-based mid-infrared camera MAX38 has been equipped
with the stacked filters and successfully obtained diffraction-limited stellar images at the Chajnantor site. The film-type
mesh filter does not have sufficient mechanical strength for a larger aperture and for use in space. We have developed
mesh filters with higher strength by applying the membrane technology for x-ray optics. The membrane-type mesh filter
is made of SiC and coated with a thin gold layer. The optical performance of the mesh filter is independent of internal
materials in principle because the SPP resonances are excited only on the metal surface. The fabricated membrane-type
mesh filter has been confirmed to provide comparable optical performance to the film-type mesh filter.
The growth and characterization of some cubic III-nitride films on suitable cubic substrates have been done, namely, c-
GaN on GaAs by MOVPE, c-GaN and c-AlGaN on MgO by RF-MBE, and c-InN and c-InGaN (In-rich) on YSZ by RFMBE.
This series of study has been much focused on the cubic-phase purity as dependent on the respective growth
conditions and resulting electrical and optical properties. For c-GaN and c-InN films, a cubic-phase purity higher than
95% is attained in spite of the metastable nature of the cubic III-nitrides. However, for c-AlGaN and c-InGaN films, the
cubic-phase purity is rapidly degraded with significant incorporation of the hexagonal phase through stacking faults on
cubic {111} faces which may be exposed on the roughened growing or substrate surface. It has been shown that the
electron mobilities in c-GaN and c-AlGaN films are much related to phase purity.
We successfully carried out 30-micron observations from the ground-based telescope for the first time with our newly
developed mid-infrared instrument, MAX38, which is mounted on the University of Tokyo Atacama 1.0-m telescope
(miniTAO telescope). Thanks to the high altitude of the miniTAO (5,640m) and dry weather condition of the Atacama
site, we can access the 30-micron wavelength region from ground-based telescopes. To achieve the observation at 30-
micron wavelength, remarkable devices are employed in MAX38. First, a Si:Sb 128x128 array detector is installed
which can detect long mid-infrared light up to 38-micron. Second, we developed metal mesh filters for 30-micron region
band-pass filter, which are composed of several gold thin-films with cross-shaped holes. Third, a cold chopper, a 6-cm
square plane mirror controlled by a piezoelectric actuator, is built into the MAX38 optics for canceling out the
atmospheric turbulence noise. It enables square-wave chopping with a 50-arcsecound throw at a frequency more than 5-
Hz. Finally, a low-dispersion grism spectrometer (R~50) will provide information on the transmission spectrum of the
terrestrial atmosphere in 20 to 40 micron. In this observation, we clearly demonstrated that the atmospheric windows
around 30-micron can be used for the astronomical observations at the miniTAO site.
Ground-based mid-infrared observations have two distinct advantages over space observations despite relatively lower
sensitivity. One is the high spatial resolution and the other is the monitoring capability. These advantages can be
emphasized particularly for the next coming ground-based infrared project University of Tokyo Atacama Observatory
(TAO). Thanks to the low water vapor of the TAO site (5,640m) and the large aperture of the telescope (6.5meter), we
can observe at 30 micron with a spatial resolution of 1 arcsec. It is about ten times higher than that of current space
telescopes. The TAO is also useful for monitoring observations because of the ample observing time.
To take these advantages we are now developing a new mid-infrared infrared instrument for the TAO 6.5-meter
telescope. This covers a wide wavelength range from 2 to 38 micron with three detectors (Si:As, Si:Sb, and InSb).
Diffraction limited spatial resolution can be achieved at wavelengths longer than 7 micron. Low-resolution spectroscopy
can also be carried out with grisms. This instrument equips a newly invented "field stacker" for monitoring observations.
It is an optical system that consists of two movable pick-up mirrors and a triangle shaped mirror, and combine two
discrete fields of the telescope into camera's field of view. It will enable us to apply a differential photometry method
and dramatically improve the accuracy and increase the feasibility of the monitoring observations at the mid-infrared
wavelengths.
We have developed a near infrared camera called ANIR (Atacama Near InfraRed camera) for the University of
Tokyo Atacama 1.0m telescope installed at the summit of Co. Chajnantor (5640m altitude) in northern Chile.
The camera is based on a PACE HAWAII-2 array with an Offner relay optics for re-imaging, and field of view
is 5.
3 × 5.
3 with pixel scale of 0.
31/pix. It is also capable of optical/infrared simultaneous imaging by inserting
a dichroic mirror before the focal plane. The high altitude and extremely low water vapor (PWV=0.5mm) of
the site enables us to perform observation of hydrogen Paschenα (Paα) emission line at 1.8751 μm. The first
light observation was carried out in July 2009, and we have successfully obtained Paα images of the Galactic
center using the N1875 narrow-band filter. This is the first success of Paα imaging of a Galactic object from a
ground based telescope. System efficiencies for the broad-band filters are measured to be 15% at the J-band and
30% at Ks, while that of the N1875 narrow-band filter, corresponding to Paα; wavelength, varies from 8 to 15%,
which may be caused by fluctuation of the atmospheric transmittance. ATRAN simulation suggests that this
corresponds to PWV of 0.3 - 1.5mm, consistent with previous results of the site testing. Measured seeing size
is median ~0.
8, corresponding to the real seeing value of 0.
6 - 0.
8. These results demonstrates the excellent
capability of the site for infrared observations.
We have developed a cold chopper system for mid-infrared observations. This system is installed into the newly
developing mid-infrared instrument, MAX38, for the University of Tokyo Atacama 1.0-m telescope. It is cooled to about
9K. The cold chopper mirror is controlled by a piezoelectric actuator with a flexure hinge lever, and enables square-wave
chopping at a frequency up to 7.8 Hz. At the moment, the maximum throw of the chopper is 30 arcseconds on the sky.
This cooled chopping mirror system can also be applied to the tip-tilt mirror for SPICA infrared space telescope. We
carried out the first light with Kanata 1.5-m telescope at Higashi-Hiroshima Observatory (Hiroshima, Japan) in June
2007 and March 2008. In this observation, we demonstrated that the cold chopper could cancel out the atmospheric
turbulence noise of a frequency of 5 Hz at 8.9 micron.
We have developed bandpass filters for long mid-infrared astronomy in 25 to 40μm. Most of materials become opaque in
wavelengths longer than 25μm. We have applied the metal mesh method to make filters of non-transparent materials.
The mesh patterns are designed based on the FDTD calculations and fabricated by the photolithography method.
Measured transmittances of the fabricated filters agree with model calculations. The mesh filter has leakage in
wavelengths shorter than the peak wavelength in principle. The most effective way to achieve a high stopband rejection
is to stack several identical mesh filters incoherently. A narrow bandwidth fitted to atmospheric windows is required in
the ground-based 30μm observations. We have fabricated a thick mesh filter without dielectric substrate, which is main
source of internal absorption. The thick mesh leads to narrowing of the bandwidth due to the waveguide effect. The
fabricated non-coated thick mesh filter has a peak transmittance of 0.8 and a bandwidth of λ/dλ=8.3 at 4 K. When
stacking four of these mesh filters, it is expected to achieve a stopband rejection over 50dB, a peak transmittance of 0.41,
and a bandwidth of λ=/dλ=17.5.
KEYWORDS: Clocks, Fiber reinforced polymers, Digital signal processing, Signal processing, Infrared radiation, Operating systems, Data processing, Control systems, Field programmable gate arrays, Cameras
Real-time capabilities are required for a controller of a large format array to reduce a dead-time attributed by readout and
data transfer. The real-time processing has been achieved by dedicated processors including DSP, CPLD, and FPGA
devices. However, the dedicated processors have problems with memory resources, inflexibility, and high cost.
Meanwhile, a recent PC has sufficient resources of CPUs and memories to control the infrared array and to process a
large amount of frame data in real-time. In this study, we have developed an infrared array controller with a software
real-time operating system (RTOS) instead of the dedicated processors. A Linux PC equipped with a RTAI extension
and a dual-core CPU is used as a main computer, and one of the CPU cores is allocated to the real-time processing. A
digital I/O board with DMA functions is used for an I/O interface. The signal-processing cores are integrated in the OS
kernel as a real-time driver module, which is composed of two virtual devices of the clock processor and the frame
processor tasks. The array controller with the RTOS realizes complicated operations easily, flexibly, and at a low cost.
The SPace Infrared telescope for Cosmology and Astrophysics (SPICA) is a infrared space-borne telescope mission of
the next generation following AKARI. SPICA will carry a telescope with a 3.5 m diameter monolithic primary mirror
and the whole telescope will be cooled to 5 K. SPICA is planned to be launched in 2017, into the sun-earth L2 libration
halo orbit by an H II-A rocket and execute infrared observations at wavelengths mainly between 5 and 200 micron. The
large telescope aperture, the simple pupil shape, the capability of infrared observations from space, and the early launch
gives us with the SPICA mission a unique opportunity for coronagraphic observation. We have started development of a
coronagraphic instrument for SPICA. The primary target of the SPICA coronagraph is direct observation of extra-solar
Jovian planets. The main wavelengths of observation, the required contrast and the inner working angle (IWA) of the
SPICA coronagraph are set to be 5-27 micron (3.5-5 micron is optional), 10-6, and a few λ/D (and as small as possible),
respectively, in which λ is the observation wavelength and D is the diameter of the telescope aperture (3.5m). For our
laboratory demonstration, we focused first on a coronagraph with a binary shaped pupil mask as the primary candidate
for SPICA because of its feasibility. In an experiment with a binary shaped pupil coronagraph with a He-Ne laser
(λ=632.8nm), the achieved raw contrast was 6.7×10-8, derived from the average measured in the dark region without
active wavefront control. On the other hand, a study of Phase Induced Amplitude Apodization (PIAA) was initiated in an
attempt to achieve better performance, i.e., smaller IWA and higher throughput. A laboratory experiment was performed
using a He-Ne laser with active wavefront control, and a raw contrast of 6.5×10-7 was achieved. We also present recent
progress made in the cryogenic active optics for SPICA. Prototypes of cryogenic deformable by Micro Electro
Mechanical Systems (MEMS) techniques were developed and a first demonstration of the deformation of their surfaces
was performed with liquid nitrogen cooling. Experiments with piezo-actuators for a cryogenic tip-tilt mirror are also
ongoing.
We are developing a new infrared camera MAX38 (Mid-infrared Astronomical eXplorer) for long mid-infrared (25-40
micron) astronomy for the Univ. of Tokyo Atacama 1.0-meter telescope which is the world highest infrared telescope at
5,640m altitude. Thanks to the high altitude and dry weather condition of the Atacama site we can access the 30-micron
wavelength region from ground-based telescopes for the first time in the world. We employ a Si:Sb 128×128 array
detector to cover the wide mid-infrared wavelength range from 8 to 38 micron.
The development of the MAX38 has been almost completed. Test observations in N-band wavelength at Hiroshima
Kanata telescope (Hiroshima, Japan) was successfully carried out on June 2007 and March 2008. The first 30-micron
observation at Atacama is scheduled in the spring of 2009.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.