This contribution summarizes the status of our current development of a novel, high-power and high-linearity photodiode. This photodiode is specifically designed to operate over an exceptionally wide optical input power range from below - 10 dBm up to + 20 dBm without relying on self-biasing effects, making it a versatile solution in many potential analog optical RF applications. The backside illuminated photodiode offers a large active diameter, which enables high coupling efficiency, allows optimization of the optical launch conditions to improve the optical saturation current and linearity as well as to improve the thermal power dissipation, which is required for high power operation. The high-power photodiodes, flip-chip-bonded to their heat-dissipation carriers, have been integrated in a hermetically sealed, rugged package with built-in matching circuit and bias-T. The thermal design and the opto-electrical characterization such as bandwidth and linearity will be presented. Preliminary gamma and proton irradiation testing, have been performed with promising results.
Buried heterostructure (BH) lasers are routinely fabricated for telecom applications. Development of quantum cascade
lasers (QCL) for sensing applications has largely benefited from the technological achievements established for telecom
lasers. However, new demands are to be met with when fabricating BH-QCLs. For example, hetero-cascade and multistack
QCLs, with several different active regions stacked on top of each other, are used to obtain a broad composite gain
or increased peak output power. Such structures have thick etch ridges which puts severe demand in carrying out
regrowth of semi-insulating layer around very deeply etched (< 10 μm) ridges in short time to realize BH-QCL. For
comparison, telecom laser ridges are normally only <5 μm deep. We demonstrate here that hydride vapour phase epitaxy
(HVPE) is capable of meeting this new demand adequately through the fabrication of BH-QCLs in less than 45 minutes
for burying ridges etched down to 10-15 μm deep. This has to be compared with the normally used regrowth time of
several hours, e.g., in a metal organic vapour phase epitaxy (MOVPE) reactor. This includes also micro-stripe lasers
resembling grating-like ridges for enhanced thermal dissipation in the lateral direction. In addition, we also demonstrate
HVPE capability to realize buried heterostructure photonic crystal QCLs for the first time. These buried lasers offer
flexibility in collecting light from the surface and relatively facile device characterization feasibility of QCLs in general;
but the more important benefits of such lasers are enhanced light matter interaction leading to ultra-high cavity Q-factors,
tight optical confinement, possibility to control the emitted mode pattern and beam shape and substantial reduction in
laser threshold.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.