High-Harmonic Generation (HHG) is a highly non-linear frequency up conversion process, mostly studied from a classical point of view. Recently, independent theoretical investigations about the quantum nature of HHG predicted several, non-classical effects in the high-harmonic radiation. In addition to the fundamental interest in understanding the physics behind HHG, a better understanding of the quantum nature of this process could potentially have a broad impact on the rapidly developing field of quantum technologies. It is in this context that present here our experimental photon statistics investigations showing the quantum nature of the HHG process.
Iterative schemes have a great potential for efficient production of complex quantum states of light. This concept refers to generation protocols working on a set of quantum states, starting from basic resources as single-photon states, and building the target in several steps through the implementation of simple quantum operations on the intermediate states. This constitutes a quantum algorithm and requires a basic quantum processor. In this talk we will discuss all-optical architectures for that purpose, based on optical cavities and fast optical switches coupled to a fast-rate single photon source.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.