KEYWORDS: Eye, Education and training, Picosecond phenomena, Radio over Fiber, Optical sensing, Affine motion model, Amplitude modulation, Data modeling, Machine learning, RGB color model
A designed visual geometry group (VGG)-based convolutional neural network (CNN) model with small computational cost and high accuracy is utilized to monitor pulse amplitude modulation-based intensity modulation and direct detection channel performance using eye diagram measurements. Experimental results show that the proposed technique can achieve a high accuracy in jointly monitoring modulation format, probabilistic shaping, roll-off factor, baud rate, optical signal-to-noise ratio, and chromatic dispersion. The designed VGG-based CNN model outperforms the other four traditional machine-learning methods in different scenarios. Furthermore, the multitask learning model combined with MobileNet CNN is designed to improve the flexibility of the network. Compared with the designed VGG-based CNN, the MobileNet-based MTL does not need to train all the classes, and it can simultaneously monitor single parameter or multiple parameters without sacrificing accuracy, indicating great potential in various monitoring scenarios.
In this paper, we simulated the ADC/DAC resolution tolerance improvement by implementing probabilistic shaping (PS) distributions in PAM and QAM modulation schemes for 400G and 800G transmissions. We compared PS- and uniformdistributed PM-16QAM, PM-32QAM, and PM-64QAM performance in 800G coherent transmission in FR links. The PS distribution scheme is based on Maxwell-Boltzmann distribution, and 0.1378 FEC overhead is chosen. We demonstrate that for any of these modulation schemes the post-BER (post-FEC bit-error rate) performance is more sensitive to ADC resolution. Moreover, the application of PS distribution can offer us 0.5-dB improvement in received optical power (ROP) for LDPC-coded PM-16QAM and 0.7-dB improvement for PM-32QAM, while PM-64QAM can get 0.6-dB improvement in ROP. For PAM transmission, we simulated a 4-channel CWDM 400G transmission system with wavelengths 1271 nm, 1291 nm, 1311 nm, and 1331 nm for 4-PAM modulation scheme. The PS distribution scheme we used in PAM is exponential distribution, and the FEC overhead is also 0.1378. We demonstrated that the pre-SER (pre-FEC symbol-error rate) performance is also more sensitive to the ADC resolution compared to DAC resolution. Therefore, the PS LPDCcoded modulation represents a great candidate to improve the system performance and reduce the cost.
One of the biggest challenges of free-space optical (FSO) communication is the wave-front aberration due to atmospheric turbulence. In FSO links the wave-front distortion manifests as a significant drop in received power, beam wander, information loss, and scintillation effects. The performance of FSO communication system is degraded significantly by the atmospheric turbulence effects. Fortunately, the adaptive optics system offers potential to mitigate the performance degradation, which is relevant for quantum communication applications as well. In our FSO experiment, we perform the transmission of 6.25 GBd QPSK signal over an FSO link without and with adaptive optics, operating at 1550nm. We emulate the atmospheric aberration in our indoor experimental setup by applying random Kolmogorov phase screens on spatial light modulators (SLMs). We demonstrate significant improvements in the power-collected, signal-to-noise-ratio (SNR), and bit-error-rate (BER) performance due to the application of adaptive optics.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.