A theoretical model was proposed to simulate the broadband second harmonic generation (SHG) based on random quasiphase matching (RQPM) by Fourier transform mothed. A broadband SHG experiment system was built which could obtain the distribution of the SHG signal over a whole ZnSe sample. Both the simulated and experimental results demonstrated that the main feature of RQPM is the linear dependency of the SHG intensity with sample thickness.
Efficient orthogonally polarized lasers (OPLs) with power balance is of great significance in many fields. A gain-selfbalanced coaxial-end-pumped orthogonally polarized laser is proposed in this presentation. Using the orthogonal Nd:YVO4 crystal arrangement and a quarter wave plate, different waves were amplified by both crystals and the OPL could operate under the optimized condition. Compared with traditional methods, the beam quality and the coherence of the OPL were greatly improved and the coherence could also be actively switched by pump conditions. Theoretical explanations and discussions were given from the view of thermal effects and laser resonators. It is believed the gain-self-balanced coaxialend-pumped OPL has broad application prospects in precision measurement and other fields.
Based on the rate equation of passively Q-switching, the effects of pump rate on the pulse timing jitter was simulated. The evolution of pulse jitter versus initial transmittance of the saturated absorber and pump power were experimentally investigated using different Nd:YAG/Cr:YAG bonded crystals. By adopting reasonable parameters, it was proved that the pulse jitter of passively Q-switching could be controlled within hundreds of nanoseconds. If an actively Q-switched laser was used as the seed laser for a passively Q-switched microchip laser, the pulse jitter could be reduced down to ~5 ns, and the output characteristics of the passively Q-switched laser with seed injection were discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.