XRISM (X-ray Imaging and Spectroscopy Mission) is an X-ray astronomy satellite developed in collaboration with JAXA, NASA and ESA. It successfully launched on Sept. 7, 2023. Two complementary X-ray telescopes, Resolve and Xtend are on-board XRISM. Resolve uses the pixelized X-ray micro calorimeter developed by NASA/GSFC and has very high energy resolution of 5 eV. On the other hand, Xtend uses an X-ray CCD camera as its focal plane detector which has high spatial resolution and a wide field of view. We evaluated the performance of the X-ray Mirror Assembly (XMA) for Xtend using data observed during the commissioning and PV phases of XRISM. To verify the imaging performance, the Point Spread Functions (PSF) generated from the observations of NGC 4151 and PDS 456 were compared with the ground-calibration results. The results show that the imaging performance of Xtend-XMA is not significantly different from that of the ground calibration, and that it meet the requirement. The effective area was verified by comparing the results of simultaneous observations of 3C 273 by XRISM and four X-ray astronomy satellites (Chandra, XMM-Newton, NuSTAR, and Swift). The results of the fitting of the X-ray spectrum of Xtend show no significant difference from the results of other satellites, suggesting the effective area used for fitting is correct. The on-axis position on the detector was estimated from the intensity of the Abell 2029 observations at four off-axis angles. The on-axis is about 40 arcsec away from the aim point, and the decrease in effective area at the aim point is less than 1%. Stray light observations of the Crab Nebula at 60 arcmin off-axis were obtained at two different satellite roll angles. The stray light intensity obtained at each roll angle was significantly different, verifying the dependence of the stray light on the roll angle.
Xtend is one of the two telescopes onboard the X-ray imaging and spectroscopy mission (XRISM), which was launched on September 7th, 2023. Xtend comprises the Soft X-ray Imager (SXI), an X-ray CCD camera, and the X-ray Mirror Assembly (XMA), a thin-foil-nested conically approximated Wolter-I optics. A large field of view of 38′ × 38′ over the energy range from 0.4 to 13 keV is realized by the combination of the SXI and XMA with a focal length of 5.6 m. The SXI employs four P-channel, back-illuminated type CCDs with a thick depletion layer of 200 μm. The four CCD chips are arranged in a 2×2 grid and cooled down to −110°C with a single-stage Stirling cooler. Before the launch of XRISM, we conducted a month-long spacecraft thermal vacuum test. The performance verification of the SXI was successfully carried out in a course of multiple thermal cycles of the spacecraft. About a month after the launch of XRISM, the SXI was carefully activated and the soundness of its functionality was checked by a step-by-step process. Commissioning observations followed the initial operation. We here present pre- and post-launch results verifying the Xtend performance. All the in-orbit performances are consistent with those measured on ground and satisfy the mission requirement. Extensive calibration studies are ongoing.
Xtend is a soft x-ray imaging telescope developed for the x-ray imaging and spectroscopy mission (XRISM). XRISM is scheduled to be launched in the Japanese fiscal year 2022. Xtend consists of the soft x-ray imager (SXI), an x-ray CCD camera, and the x-ray mirror assembly (XMA), a thin-foil-nested conically approximated Wolter-I optics. The SXI uses the P-channel, back-illuminated type CCD with an imaging area size of 31mm on a side. The four CCD chips are arranged in a 2×2 grid and can be cooled down to −120 °C with a single-stage Stirling cooler. The XMA nests thin aluminum foils coated with gold in a confocal way with an outer diameter of 45 cm. A pre-collimator is installed in front of the x-ray mirror for the reduction of the stray light. Combining the SXI and XMA with a focal length of 5.6m, a field of view of 38′ × 38′ over the energy range from 0.4 to 13 keV is realized. We have completed the fabrication of the flight model of both SXI and XMA. The performance verification has been successfully conducted in a series of sub-system level tests. We also carried out on-ground calibration measurements and the data analysis is ongoing.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.