In the charge-coupled device(CCD)-based optoelectronic system(OS),the external disturbance has a bad influence on the line-of-sight(LOS) stabilization, especially in a moving platform. Generally, with a high-performance fiber-optic gyroscope(FOG), we build a velocity inner loop to enhance the disturbance suppression ability(DSA). However, FOG has a big size, high cost and power consumption which limit its application in space-constrained occasion. With the development of the micro-electro-mechanical system(MEMS) industry, the MEMS accelerometer and gyro are more used in the optoelectronic field for their small volume and low price. Since the MEMS accelerometer has a much higher bandwidth than the MEMS gyro, it’s more suitable to build a high-bandwidth and high-sampling inner loop to enhance the DSA. Unfortunately, since the signal of the MEMS accelerometer in low frequency is weak and commonly with drift and much noise, the low-frequency DSA of the inner loop is insufficient. Considering the CCD has a good low-frequency signal and the MEMS accelerometer has an advantage in high frequency, based on the acceleration and position double-loop control(APDC), we proposed to add an additional velocity loop by fusing the CCD’s low-frequency signal and the accelerometer’s high-frequency signal with an open-loop bandwidth fusion method(OBF) to further enhance the DSA. The fusion velocity even has a higher bandwidth than the MEMS gyro. A series of comparative experimental results demonstrate the proposed method could get a lightweight OS with a strong DSA, which is close to the triple loop control based on the MEMS accelerometer and real gyro, and even has a better DSA in medium frequency.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.