Lobster eye telescopes are a type of innovative telescope design, which could observe celestial objects over a very wide field of view in x-ray band. Thanks to this property, lobster eye telescopes are widely used to detect x-ray transients in time-domain astronomy. However, images obtained by lobster eye telescopes are modified by their unique point spread functions, which would spread photons from point sources to large images with crucify structure. Therefore, it is hard to design an automatic source detection algorithm with high efficiency and fast speed. Manual interventions are always required to modify parameters of contemporary methods to fit data properties of each observed images. In this paper, we will review the classical method and several new methods proposed by our group to detect sources from images obtained by lobster eye telescopes. We have compared the performance of different methods and results show that we would require to integrate different methods to develop a pipeline to process images obtained by lobster eye telescopes.
S. N. Zhang, M. Feroci, A. Santangelo, Y. W. Dong, H. Feng, F. J. Lu, K. Nandra, Z. S. Wang, S. Zhang, E. Bozzo, S. Brandt, A. De Rosa, L. J. Gou, M. Hernanz, M. van der Klis, X. D. Li, Y. Liu, P. Orleanski, G. Pareschi, M. Pohl, J. Poutanen, J. L. Qu, S. Schanne, L. Stella, P. Uttley, A. Watts, R. Xu, W. F. Yu, J. J. M. in ’t Zand, S. Zane, L. Alvarez, L. Amati, L. Baldini, C. Bambi, S. Basso, S. Bhattacharyya, R. Bellazzini, T. Belloni, P. Bellutti, S. Bianchi, A. Brez, M. Bursa, V. Burwitz, C. Budtz-Jørgensen, I. Caiazzo, R. Campana, X. L. Cao, P. Casella, C. Y. Chen, L. Chen, T. Chen, Y. Chen, M. Civitani, F. Coti Zelati, W. Cui, Z. G. Dai, E. Del Monte, D. de Martino, S. Di Cosimo, S. Diebold, M. Dovciak, I. Donnarumma, V. Doroshenko, P. Esposito, Y. Evangelista, Y. Favre, P. Friedrich, F. Fuschino, J. Galvez, Z. Gao, M. Ge, O. Gevin, D. Goetz, D. Han, J. Heyl, J. Horak, W. Hu, F. Huang, Q. S. Huang, R. Hudec, D. Huppenkothen, G. L. Israel, A. Ingram, V. Karas, D. Karelin, P. Jenke, L. Ji, S. Korpela, D. Kunneriath, C. Labanti, G. Li, X. Li, Z. S. Li, E. W. Liang, O. Limousin, L. Lin, Z. X. Ling, H. B. Liu, H. Liu, Z. Liu, B. Lu, N. Lund, D. Lai, B. Luo, T. Luo, B. Ma, S. Mahmoodifar, M. Marisaldi, A. Martindale, N. Meidinger, Y. P. Men, M. Michalska, R. Mignani, M. Minuti, S. Motta, F. Muleri, J. Neilsen, M. Orlandini, A. T. Pan, A. Patruno, E. Perinati, A. Picciotto, C. Piemonte, M. Pinchera, A. Rachevski, M. Rapisarda, N. Rea, E. M. Rossi, A. Rubini, G. Sala, X. W. Shu, C. Sgro, Z. X. Shen, P. Soffitta, L. Song, G. Spandre, G. Stratta, T. Strohmayer, L. Sun, J. Svoboda, G. Tagliaferri, C. Tenzer, T. Hong, R. Taverna, G. Torok, R. Turolla, S. Vacchi, J. Wang, D. Walton, K. Wang, J. F. Wang, R. J. Wang, Y. Wang, S. Weng, J. Wilms, B. Winter, X. Wu, S. L. Xiong, Y. Xu, Y. Xue, Z. Yan, S. Yang, X. Yang, Y. J. Yang, F. Yuan, W. Yuan, Y. F. Yuan, G. Zampa, N. Zampa, A. Zdziarski, C. Zhang, C. L. Zhang, L. Zhang, X. Zhang, Z. Zhang, W. Zhang, S. Zheng, P. Zhou, X. Zhou
eXTP is a science mission designed to study the state of matter under extreme conditions of density, gravity and magnetism. Primary goals are the determination of the equation of state of matter at supra-nuclear density, the measurement of QED effects in highly magnetized star, and the study of accretion in the strong-field regime of gravity. Primary targets include isolated and binary neutron stars, strong magnetic field systems like magnetars, and stellar-mass and supermassive black holes. The mission carries a unique and unprecedented suite of state-of-the-art scientific instruments enabling for the first time ever the simultaneous spectral-timing-polarimetry studies of cosmic sources in the energy range from 0.5-30 keV (and beyond). Key elements of the payload are: the Spectroscopic Focusing Array (SFA) - a set of 11 X-ray optics for a total effective area of ∼0.9 m2 and 0.6 m2 at 2 keV and 6 keV respectively, equipped with Silicon Drift Detectors offering <180 eV spectral resolution; the Large Area Detector (LAD) - a deployable set of 640 Silicon Drift Detectors, for a total effective area of ∼3.4 m2, between 6 and 10 keV, and spectral resolution better than 250 eV; the Polarimetry Focusing Array (PFA) – a set of 2 X-ray telescope, for a total effective area of 250 cm2 at 2 keV, equipped with imaging gas pixel photoelectric polarimeters; the Wide Field Monitor (WFM) - a set of 3 coded mask wide field units, equipped with position-sensitive Silicon Drift Detectors, each covering a 90 degrees x 90 degrees field of view. The eXTP international consortium includes major institutions of the Chinese Academy of Sciences and Universities in China, as well as major institutions in several European countries and the United States. The predecessor of eXTP, the XTP mission concept, has been selected and funded as one of the so-called background missions in the Strategic Priority Space Science Program of the Chinese Academy of Sciences since 2011. The strong European participation has significantly enhanced the scientific capabilities of eXTP. The planned launch date of the mission is earlier than 2025.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.