The purpose of this study was to investigate feasibility of computer-aided detection of masses and calcification clusters in breast tomosynthesis images and obtain reliable estimates of sensitivity and false positive rate on an independent test set. Automatic mass and calcification detection algorithms developed for film and digital mammography images were applied without any adaptation or retraining to tomosynthesis projection images. Test set contained 36 patients including 16 patients with 20 known malignant lesions, 4 of which were missed by the radiologists in conventional mammography images and found only in retrospect in tomosynthesis. Median filter was applied to tomosynthesis projection images. Detection algorithm yielded 80% sensitivity and 5.3 false positives per breast for calcification and mass detection algorithms combined. Out of 4 masses missed by radiologists in conventional mammography images, 2 were found by the mass detection algorithm in tomosynthesis images.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.