With the development of space lasers, research on the stability of laser films in space environments is becoming more and more important. The space laser film will be damaged by protons, gamma rays and other space radiation environments, and it will be affected by laser radiation, too. This puts forward higher requirements for space laser film elements, so it is essential to carry out space environment simulation tests on laser films. In this paper, the effect of 40keV proton on SiO2 film was studied and then the 355nm laser damage threshold test on it was performed. It was found that the ultraviolet absorption of the film irradiated by proton increased, resulting in the decrease of its transmittance and its ability to resist laser damage.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.