KEYWORDS: Tumors, Tumor growth modeling, Breast, Digital breast tomosynthesis, Breast cancer, Feature extraction, Tissues, Performance modeling, Process modeling, Optimization (mathematics)
Predicting lesion malignancy accurately and reliably in digital breast tomosynthesis is critically important for breast cancer screening. Tumor shape and interactive effect between the tumor and surrounding normal tissue are two of the most important indicators in radiologists’ reading. On the other hand, the density and texture of region within the tumor also play an important role in malignancy classification. Inspired by the above observations, shell and kernel descriptors were proposed in this work for breast lesion malignancy prediction, in which the shell descriptor is used for describing the tumor shape and surrounding normal tissue while the kernel descriptor is used to describe the internal tumor region. A joint deep learning model based on the AlexNet was designed to learn and fuse features from shell and kernel. Additionally, to obtain more reliable predictive results, a multi-objective optimization algorithm and a reliable classifier fusion strategy were used to train the predictive model and optimally combine outputs from both shell and kernel descriptors. In this study, 278 malignant and 685 benign cases were used through 2-fold cross validation. Compared with the single descriptor based models using either shell or kernel, the experimental results demonstrated that the combined shell and kernel descriptors can capture the most important features and the corresponding predictive model achieved the best performance as well.
Positron emission tomography (PET) imaging has been widely explored for treatment outcome prediction. Radiomicsdriven methods provide a new insight to quantitatively explore underlying information from PET images. However, it is still a challenging problem to automatically extract clinically meaningful features for prognosis. In this work, we develop a PET-guided distant failure predictive model for early stage non-small cell lung cancer (NSCLC) patients after stereotactic ablative radiotherapy (SABR) by using sparse representation. The proposed method does not need precalculated features and can learn intrinsically distinctive features contributing to classification of patients with distant failure. The proposed framework includes two main parts: 1) intra-tumor heterogeneity description; and 2) dictionary pair learning based sparse representation. Tumor heterogeneity is initially captured through anisotropic kernel and represented as a set of concatenated vectors, which forms the sample gallery. Then, given a test tumor image, its identity (i.e., distant failure or not) is classified by applying the dictionary pair learning based sparse representation. We evaluate the proposed approach on 48 NSCLC patients treated by SABR at our institute. Experimental results show that the proposed approach can achieve an area under the characteristic curve (AUC) of 0.70 with a sensitivity of 69.87% and a specificity of 69.51% using a five-fold cross validation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.