KEYWORDS: Data modeling, Medical imaging, Breast cancer, Visual process modeling, Convolutional neural networks, Biomedical optics, Performance modeling, Image classification, Data acquisition
The development of convolutional neural network has brought great achievements to image classification in recent years. However, the classification performance is good only for natural images rather than medical images. An important reason is that the medical image database used for training is always deficient. So how to use these limited data to acquire more extensive features has become a hot research focus. In this paper, we first update the order and number of the whole training data every time in active and incremental fine-tuning. Then we set different contribution rate for the data selected in our model, which based on the information quantity of the data in training stage and make our model converge steadily. After that, a pre-trained model and our preprocessed datasets are employed, which allows us to further fine-tune our models. The experiments evaluated on two different biomedical datasets shows that our model can achieve promising results.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.