The quantum efficiency characteristics of InP/In0.53Ga0.47As/InP photocathode which is one of the field-assisted negative electron affinity photocathodes with III-V compound semiconductor and works at transmission mode with a wide1 spectral response range from 1.0-1.7 μm were studied in this paper. Under certain field-assisted bias voltage, internal quantum efficiency at different wavelength versus structure parameters and doping concentration of the photocathode was simulated by the APSYS program. Results show that: First, internal quantum efficiency of the photocathode rises with the increasing of the field-assisted bias voltage. Second, the internal quantum efficiency gradually increases to a maximum at thickness=0.2um of P-InGaAs photo-absorbing layer and then reduces with the increasing of thickness. However, doping concentration of P-InGaAs photo-absorbing layer has little influence on it. Third, the internal quantum efficiency reduces with the increasing of thickness and doping concentration of P-InP photoelectron-emitting layer. The optimization results show that when the thickness of the photo-absorbing layer and the photoelectron-emitting layer are both 0.2 μm, and the doping concentration of the photo-absorbing layer and the photoelectron-emitting layer are about 1.5×1015 cm-3 and 1.0×1016 cm-3 respectively, under a certain field-assisted bias voltage, the line of the external quantum efficiency versus wavelength is ideal. Besides, the response time of photocathode can be reduced to less than 50 ps.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.