Aspera is a NASA Pioneers SmallSat mission designed to detect and map the O VI emission (1032 Å) through long-slit spectroscopy in the halos of nearby galaxies for the first time. The spectrograph utilizes toroidal gratings with multilayer coatings of aluminum, lithium fluoride, and magnesium fluoride that optimize their throughput in the extreme ultraviolet EUV waveband of 1030 to 1040 Å. We discuss the grating verification test setup design, including optical alignment and reference measurement setup. We also present grating testing and grating efficiency simulation results using the target grating groove profile and the multi-layer coatings.
Aspera is a NASA Pioneers Mission designed to measure faint OVI emission around nearby galaxies with unprecedented sensitivity. The SmallSat payload consists of two identical co-aligned spectrographs, both operating in the Far Ultraviolet (FUV) between 1030−1040 Å. Missions operating at FUV wavelengths are particularly sensitive to contamination, as short wavelengths are easily scattered and absorbed by contaminants deposited on payload optical surfaces. A strict contamination control plan is critical to avoiding a severe loss in FUV throughput. Aspera contamination control efforts have been tailored to fit within the scope of a sub-Class D mission, a challenge that has become increasingly relevant as advances in FUV optics/detectors drive an uptick in smaller platform, contamination sensitive UV payloads. Contamination monitoring is used to audit the cleanroom environment, avoid outgassing contaminants under vacuum, and assess contaminant levels on payload optics. We present a detailed contamination budget through the mission end of life as well as our ongoing contamination monitoring efforts. We discuss protocols implemented for minimizing contamination-related performance degradation.
Aspera is a NASA-funded UV SmallSat mission designed to detect and map warm-hot phase halo gas around nearby galaxies. The Aspera payload is designed to detect faint diffuse O VI emission at around 103.2 nm, satisfying the sensitivity requirement of 5×10−19 erg/s/cm2/arcsec2 over 179 hours of exposure. In this manuscript, we describe the overall payload design of Aspera. The payload comprises two identical co-aligned UV long-slit spectrograph optical channels sharing a common UV-sensitive microchannel plate detector. The design delivers spectral resolution R ∼ 2,000 over the wavelength range of 101 to 106 nm. The field of view of each channel is 1 degree by 30 arcsec, with an effective area of 1.1 cm2. The mission is now entering the payload integration and testing phase, with the projected launch-ready date set for late 2025 or early 2026. The mission will be launched into low-Earth orbit via rideshare.
Aspera is a NASA Astrophysics Pioneers SmallSat mission designed to study diffuse Ovi emission from the warm-hot phase gas in the halos of nearby galaxies. Its payload consists of two identical Rowland Circle-type long-slit spectrographs, sharing a single MicroChannel plate detector. Each spectrograph channel consists of an off-axis parabola primary mirror and a toroidal diffraction grating optimized for the 1013-1057 Å bandpass. Despite the simple configuration, the optical alignment/integration process for Aspera is challenging due to tight optical alignment tolerances, driven by the compact form factor, and the contamination sensitivity of the Far-Ultraviolet optics and detectors. In this paper, we discuss implementing a novel multi-phase approach to meet these requirements using state-of-the-art optical metrology tools. For coarsely positioning the optics we use a blue-laser 3D scanner while the fine alignment is done with a Zygo interferometer and a custom computer-generated hologram. The detector focus requires iterative in-vacuum alignment using a Vacuum UV collimator. The alignment is done in a controlled cleanroom facility at the University of Arizona.
Aspera is a NASA-funded UV SmallSat Mission in development with a projected launch in 2025. The goal of the mission is to detect and map warm-hot gas in the circumgalactic medium of nearby galaxies traced by the Ovi emission line at 103.2 nm. To that goal, Aspera will conduct long-exposure observations at one or more spatial fields around each target galaxy, employing two long-slit spectrographs. Spectra from both channels are focused on a single micro-channel plate detector. In preparation of the mission’s launch, we are developing a data reduction pipeline, the goal of which is to reconstruct a calibrated 3D IFU-like data cube by combining the photon event lists obtained during each observation for a given target galaxy. In this proceedings paper, we present an outline for the data reduction pipeline and describe the data flow through the processing of science observations. We will further discuss individual steps to be applied to the data during the processing and show how our final data cubes shall be reconstructed. Finally, we will present our planned data products and discuss how simulations of the Aspera data cubes are being used to develop the pipeline.
Aspera is the UV small-satellite mission to detect and map the warm-hot phase gas in nearby galaxy halo. Aspera was chosen as one of NASA's Astrophysics Pioneers missions in 2021 and employs a FUV long-slit spectrograph payload, optimized for low-surface brightness O VI emission line detection at 103-104 nm. The mission incorporates state-of-the-art UV technologies such as high-efficiency micro-channel plates and enhanced LiF coating to achieve a high level of diffuse-source sensitivity of the payload, down to 5.0E-19 erg/s/cm^2/arcsec^2. The combination of the high sensitivity and a 1-degree by 30-arcsecond long-slit field of view enables efficient 2D mapping of diffuse halo gas through step and stare concept observation. Aspera is presently in the critical design phase, with an expected launch date in mid-2025. This work provides a current overview of the Aspera payload design.
Aspera is an extreme-UV (EUV) Astrophysics small satellite telescope designed to map the warm-hot phase coronal gas around nearby galaxy halos. Theory suggests that this gas is a significant fraction of a galaxy’s halo mass and plays a critical role in its evolution, but its exact role is poorly understood. Aspera observes this warm-hot phase gas via Ovi emission at 1032 °A using four parallel Rowland-Circle-like spectrograph channels in a single payload. Aspera’s robust-and-simple design is inspired by the FUSE spectrograph, but with smaller, four 6.2 cm × 3.7 cm, off-axis parabolic primary mirrors. Aspera is expected to achieve a sensitivity of 4.3×10−19 erg/s/cm2/arcsec2 for diffuse Ovi line emission. This superb sensitivity is enabled by technological advancements over the last decade in UV coatings, gratings, and detectors. Here we present the overall payload design of the Aspera telescope and its expected performance. Aspera is funded by the inaugural 2020 NASA Astrophysics Pioneers program, with a projected launch in late 2024.
The design of a CubeSat telescope for academic research purposes must balance complicated optical and structural designs with cost to maximize performance in extreme environments. Increasing the CubeSat size (eg. 6U to 12U) will increase the potential optical performance, but the cost will increase in kind. Recent developments in diamond-turning have increased the accessibility of aspheric aluminum mirrors, enabling a cost-effective regime of well-corrected nanosatellite telescopes. We present an all-aluminum versatile CubeSat telescope (VCT) platform that optimizes performance, cost, and schedule at a relatively large 95 mm aperture and 0.4 degree diffraction limited full field of view stablized by MEMS fine-steering modules. This study features a new design tool that permits easy characterization of performance degradation as a function of spacecraft thermal and structural disturbances. We will present details including the trade between on- and off-axis implementations of the VCT, thermal stability requirements and finite-element analysis, and launch survival considerations. The VCT is suitable for a range of CubeSat borne applications, which provides an affordable platform for astronomy, Earth-imaging, and optical communications.
Here we review the current optical mechanical design of MagAO-X. The project is post-PDR and has finished the design phase. The design presented here is the baseline to which all the optics and mechanics have been fabricated. The optical/mechanical performance of this novel extreme AO design will be presented here for the first time. Some highlights of the design are: 1) a floating, but height stabilized, optical table; 2) a Woofer tweeter (2040 actuator BMC MEMS DM) design where the Woofer can be the current f/16 MagAO ASM or, more likely, fed by the facility f/11 static secondary to an ALPAO DM97 woofer; 3) 22 very compact optical mounts that have a novel locking clamp for additional thermal and vibrational stability; 4) A series of four pairs of super-polished off-axis parabolic (OAP) mirrors with a relatively wide FOV by matched OAP clocking; 5) an advanced very broadband (0.5-1.7μm) ADC design; 6) A Pyramid (PWFS), and post-coronagraphic LOWFS NCP wavefront sensor; 7) a vAPP coronagraph for starlight suppression. Currently all the OAPs have just been delivered, and all the rest of the optics are in the lab. Most of the major mechanical parts are in the lab or instrument, and alignment of the optics has occurred for some of the optics (like the PWFS) and most of the mounts. First light should be in early 2019.
MagAO-X is an entirely new extreme adaptive optics system for the Magellan Clay 6.5 m telescope, funded by the NSF MRI program starting in Sep 2016. The key science goal of MagAO-X is high-contrast imaging of accreting protoplanets at Hα. With 2040 actuators operating at up to 3630 Hz, MagAO-X will deliver high Strehls (> 70%), high resolution (19 mas), and high contrast (< 1 × 10-4 ) at Hα (656 nm). We present an overview of the MagAO-X system, review the system design, and discuss the current project status.
High-speed optical photometry is characterizing man made satellites and space debris in Earth orbit. Commercially available Electron Multiplying CCD (EMCCD) imagers and cameras are driving a renaissance in this field, with several new instruments under development. The Steward Observatory Chimera Photometer provides simultaneous three-color photometry in the Sloan r’, i’, and z’ bands over a wide field of view. The design is optimized for the Steward Observatory Kuiper 1.58 m Telescope, although other telescopes can be supported with the exchange of the wide-field collimator. In this paper, the design and first light performance of the instrument is presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.