The Giant Magellan Telescope, with a 25.4m primary and operating from the ultraviolet to the long wave infrared, is being built as one of the next-generation Extremely Large Telescopes. The size of the GMT and its doubly segmented design create a unique set of challenges for telescope alignment, from initial alignment during the assembly, integration, verification and commissioning phase to operational alignment between and during the telescope exposures. GMT therefore includes a Telescope Metrology System (TMS) that uses networks of laser trackers and absolute and differential distance-measuring interferometers for improved alignment efficiency and phasing of the mirror segments. The TMS has successfully passed its Preliminary Design Review and entered the Final Design phase. In this paper we present the current design and expected performance of the GMT TMS.
In the past two years significant forward progress has been achieved in development of Adaptive Optics sensing and control technology needed for the observation modes of the Giant Magellan Telescope1. Most notable is the recent progress in demonstrating the accurate and stable control of segment piston in the diffraction-limited Natural Guide Star AO observation mode. Two NSF-funded testbeds have been successfully operated to validate the control algorithms for active optics, adaptive optics and segment piston in diffraction-limited observation. GMTO also built and operated wavefront sensor prototypes and integrated them with the testbeds. The testing has largely validated the wavefront sensor designs and has retired much of the fabrication and assembly risks. In parallel with the hardware demonstrations, significant progress has been achieved in both NGAO and LTAO control simulations verifying compliance with the required performance in each of these observation modes and thereby supporting the image quality budgets. In the area of design the GMTO Telescope Metrology Subsytem has passed its Preliminary Design Review and the conceptual design of the Adaptive Optics Test Camera has been completed. Finally, a Delta Preliminary Design phase for the LTAO hardware has begun.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.