This will count as one of your downloads.
You will have access to both the presentation and article (if available).
The team at the Australian National University’s (ANU) Research School of Astronomy and Astrophysics (RSAA) have developed a design concept for such a miniature version, coined Pocket-GMT. Pocket-GMT is designed to simulate GMT’s segmented primary mirror as well as introduce aberrations and distortions similar to what GMT will experience. This would present an opportunity to optimize the functionality of GMT’s control software and wavefront sensors, and to demonstrate phasing within the laboratory prior to full-scale telescope implementation. Pocket-GMT would also be compatible with later GMT instrument prototypes, thus ensuring its usefulness going into the future.
The imaging requirement is almost met using the correlation algorithm to estimate the displacement of the spot, along with a high-order controller tailored to the telescope wind shake. This requires a sufficiently bright star to be able to run at 500 Hz, so the sky coverage is limited. In the absence of wind, then the star can be fainter and the requirement is met.
The spectroscopy requirement is met even in the case of high wind. The results are even better if we use the GLAO WFSs as well as the tip-tilt sensors. Further work will explore the viability of inserting a DM in the OIWFS and the resulting tip-tilt performance.
View contact details
No SPIE Account? Create one