Silicon nitride waveguide based photonic integrated circuits (PICs) are intensively investigated for a wide range of sensing applications in the visible to sub 1-µm near-infrared spectral region. The monolithic co-integration of silicon photodiodes and read-out electronics offers additional benefits in terms of performance and miniaturization. We discuss challenging aspects related to the efficient coupling and routing of light to, from, and within PICs and present interfacing photonic building blocks offering potential solutions. We demonstrate the suitability of these interfacing building blocks by using them for the realization of a PIC-based multi-channel optical coherence tomography concept at 840 nm.
Publisher’s Note: This conference presentation, originally published on 14 December 2017, was withdrawn per author request
Silicon photonics meet most fabrication requirements of standard CMOS process lines encompassing the photonics-electronics consolidation vision. Despite this remarkable progress, further miniaturization of PICs for common integration with electronics and for increasing PIC functional density is bounded by the inherent diffraction limit of light imposed by optical waveguides. Instead, Surface Plasmon Polariton (SPP) waveguides can guide light at sub-wavelength scales at the metal surface providing unique light-matter interaction properties, exploiting at the same time their metallic nature to naturally integrate with electronics in high-performance ASPICs.
In this article, we demonstrate the main goals of the recently introduced H2020 project PlasmoFab towards addressing the ever increasing needs for low energy, small size and high performance mass manufactured PICs by developing a revolutionary yet CMOS-compatible fabrication platform for seamless co-integration of plasmonics with photonic and supporting electronic. We demonstrate recent advances on the hosting SiN photonic hosting platform reporting on low-loss passive SiN waveguide and Grating Coupler circuits for both the TM and TE polarization states. We also present experimental results of plasmonic gold thin-film and hybrid slot waveguide configurations that can allow for high-sensitivity sensing, providing also the ongoing activities towards replacing gold with Cu, Al or TiN metal in order to yield the same functionality over a CMOS metallic structure. Finally, the first experimental results on the co-integrated SiN+plasmonic platform are demonstrated, concluding to an initial theoretical performance analysis of the CMOS plasmo-photonic biosensor that has the potential to allow for sensitivities beyond 150000nm/RIU.
Programmable switching nodes supporting Software-Defined Networking (SDN) over optical interconnecting technologies arise as a key enabling technology for future disaggregated Data Center (DC) environments. The SDNenabling roadmap of intra-DC optical solutions is already a reality for rack-to-rack interconnects, with recent research reporting on interesting applications of programmable silicon photonic switching fabrics addressing board-to-board and even on-board applications. In this perspective, simplified information addressing schemes like Bloom filter (BF)-based labels emerge as a highly promising solution for ensuring rapid switch reconfiguration, following quickly the changes enforced in network size, network topology or even in content location. The benefits of BF-based forwarding have been so far successfully demonstrated in the Information-Centric Network (ICN) paradigm, while theoretical studies have also revealed the energy consumption and speed advantages when applied in DCs. In this paper we present for the first time a programmable 4x4 Silicon Photonic switch that supports SDN through the use of BF-labeled router ports. Our scheme significantly simplifies packet forwarding as it negates the need for large forwarding tables, allowing for its remote control through modifications in the assigned BF labels. We demonstrate 1x4 switch operation controlling the Si-Pho switch by a Stratix V FPGA module, which is responsible for processing the packet ID and correlating its destination with the appropriate BF-labeled outgoing port. DAC- and amplifier-less control of the carrier-injection Si-Pho switches is demonstrated, revealing successful switching of 10Gb/s data packets with BF-based forwarding information changes taking place at a time-scale that equals the duration of four consecutive packets.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.