Nanoimprint lithography (NIL) is a promising technology on next generation lithography for the fabrication of semiconductor devices. NIL is a one-to-one lithographic technology with a contact transfer methodology using templates. Therefore, critical dimension (CD) error and defect performance of templates has direct impact on wafer performance. The previous paper reported that the self-aligned double patterning (SADP) process on master template had better performance on resolution and defect performance [2]. In proceeding with development of SADP template process technology, we found that CD errors occurred in the area with a pattern density change. CD control over any pattern density is one of the critical issues. In this report, we have investigated the impact of the proximity effect correction (PEC) and fogging effect correction (FEC) parameters for electron beam writing on gap space and core space. It was found that the optimal PEC parameter for resist CD is not the best for the core space and the gap space. The resist CD is uniform, but there is a difference in resist shape on the local pattern density variation. It was also found that the core space had dependency on global pattern density even if the optimal FEC parameter for resist CD was applied. FEC can correct resist CD, but it cannot adjust resist shape. By using the optimal PEC and FEC parameters for SADP process, the gap space range of 0.6 nm and the core space range of 0.5 nm were successfully obtained.
An essential element of sub-15 nm nanoimprint lithography is to create fine patterns on a template. However, it is challenging to create sub-15 nm half-pitch patterns on a template by direct drawing with a resist, owing to poor resolution and low sensitivity. We are currently researching the development of sub-15 nm half-pitch patterns by applying self-aligned double patterning on a template. The defect density of the template has not yet reached a high-volume manufacturing level. The aim of our study is to achieve a defect density of less than 1 pcs/cm2 for sub-15 nm templates. To achieve this, we need to overcome stochastics-induced resist defects. We aim to determine the mechanism of defect formation by observing the details of the defects. We challenged resist-pattern inspections using a grazing-incidence coherent scatterometry microscope, which illuminated an extreme ultraviolet light to the resist pattern and detected the diffraction signal from the pattern. This study was conducted in collaboration with University of Hyogo and Kioxia Corporation. In this paper, we present the results of damage evaluations and resist-pattern inspections.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.