In this work, we investigate biometrics applied on 2D faces in order to secure areas requiring high security level. Based on emerging deep learning methods (more precisely transfer learning) as well as two classical machine learning techniques (Support Vector Machines and Random Forest), different approaches have been used to perform person authentication. Preprocessing filtering steps of input images have been included before features extraction and selection. The goal has been to compare those in terms of processing time, storage size and authentication accuracy according to the number of input images (for the learning task) and preprocessing tasks. We focus on data-related aspects to store biometric information on a low storage capacity remote card (10Ko), not only in a high security context but also in terms of privacy control. The proposed solutions guarantee users the control of their own biometrics data. The study highlights the impact of preprocessing to perform real-time computation, preserving a relevant accuracy while reducing the amount of biometric data. Considering application constraints, this study concludes with a discussion dealing with the tradeoff of the available resources against the required performances to determine the most appropriate method.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.