In many applications, there is a great demand for reliable, small, and low-cost three-dimensional imaging systems. Promising systems for applications such as automotive applications as well as safe human robotic collaboration are light detection and ranging (lidar) systems based on the direct time-of-flight principle. Especially for covering a large field of view or long-range capabilities, the previously used polygon-scanners are replaced by microelectromechanical systems (MEMS)-scanners. A more recent development is to replace the typically used avalanche photodiodes with single-photon avalanche diodes (SPADs). The combination of both technologies into a MEMS-based SPAD lidar system promises a significant performance increase and cost reduction compared with other approaches. To distinguish between signal and background/noise photons, SPAD-based detectors have to form a histogram by accumulating multiple time-resolved measurements. In this article, a signal and data processing method is proposed, which considers the time-dependent scanning trajectory of the MEMS-scanner during the histogram formation. Based on known reconstruction processes used in stereo vision setups, an estimate for an accumulated time-resolved measurement is derived, which allows to classify it as signal or noise. In addition to the theoretical derivation of the signal and data processing, an implementation is experimentally verified in a proof-of-concept MEMS-based SPAD lidar system.
Automotive and robotic applications demand three-dimensional (3D) imaging systems, that are reliable, small and lowcost. A promising technology to satisfy these demands are LiDAR-systems based on the direct time-of-flight principle. To greatly reduce the costs and footprint of current LiDAR-systems new compelling concepts are emerging. These concepts mainly differ in the used illumination techniques of the field-of-view (FOV). Micro-electro-mechanical systems (MEMS)- scanners are replacing the bulkier and more expensive polygon mirrors, which were earlier used to deflect the laser beam and partially illuminate the FOV. In contrast to this approach the full illumination of the FOV with a single widened laser beam is used by the concept known as flash-illumination. The range performance of the direct time-of-flight principle is directly proportional to the emitted laser pulse power and is either limited by detector noise or background radiation. High-power near-infrared laser diodes are announced, which offer higher pulse peak power and shorter laser pulses. The high energy density of these laser sources can, however, be hazardous to the human eye. Therefore, the energy density of the laser pulse must be limited and classified according to the IEC 60825-1:2014. While this is particularly easy for Flash LiDAR-systems, a two-dimensional consideration is necessary to determine the accessible emission limits (AEL) for MEMS-based LiDARsystems, which takes the time dependent scanning-motion of the mirror into account. This work presents a framework to describe and calculate the differences between the calculations of the AEL for Flash- and MEMS-based LiDAR-systems. To achieve this the framework incorporates the calculation of the two-dimensional pulse distribution based on the time dependent behaviour of the MEMS-scanner for the most commonly used one- and two-dimensional scanning-patterns. To further estimate and compare the performance of the LiDAR-systems this work describes an automotive and robotic application use case scenario, which are used to compare the performance for various performance metrices.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.