The Spectro-Photometer for the History of the Universe, Epoch of Reionization, and Ices Explorer (SPHEREx) is an upcoming all-sky near-infrared spectroscopic survey satellite designed to address all three primary science goals of NASA’s Astrophysics Division. SPHEREx employs a series of Linear Variable Filters (LVFs) to create 102 spectral channels across the wavelength range of 0.75 to 5 µm, with spectral resolutions R between 35 and 120. This paper presents the spectral calibration setup used for SPHEREx and discusses the various challenges encountered during the measurement process. Ultimately, we demonstrate the spectral responses for all 25 million pixels in SPHEREx.
GrainCams is a suite comprising two cameras: SurfCam and LevCam, developed by the Korea Astronomy and Space Science Institute (KASI) for the Commercial Lunar Payload Service (CLPS). SurfCam utilizes a light field camera with a Micro Lens Array (MLA) to capture 3D images of the fairy castle structures on the lunar surface. LevCam is designed to detect dust lofting above the lunar surface. Surviving extreme environments, including launch vibrations, lunar surface temperatures, space radiation, etc., necessitates thorough safety reviews, verification, and reliable ground testing of the system. This paper presents the comprehensive test results of GrainCams engineering qualification model (EQM), along with the cameras' performance following space environment tests such as Total Ionizing Dose (TID), Electro-Magnetic Compatibility (EMC), vibration/shock, and thermal-vacuum tests. Performance test analysis plays a crucial role in ensuring mission success. TID and EMC tests assess the space radiation endurance and electronic compatibility of the electrical components. The vibration/shock test evaluates mechanical stiffness and frequency characteristics during launch. Additionally, GrainCams undergoes temperature variation in the thermal-vacuum test to assess system performance under lunar operational conditions. Our demonstration confirms that GrainCams meet system requirements, and their performance in harsh environments is substantiated by the shared test results.
Slated for launch in 2025, SPHEREx will be NASA’s next astrophysics explorer mission. Optimized to meet rigorous requirements to precisely map the Universe’s large scale structure, produce deep maps of the diffuse extra-galactic background, and to survey the Milky Way’s biogenic ice content, the SPHEREx telescope’s widefield optical design utilizes a series of custom near infrared linear variable filters to survey the entire sky spectroscopically. This unique instrument has now completed its construction phase and is fully assembled for flight. To precisely focus and calibrate the optical and spectroscopic properties of SPHEREx, a custom optical-cryogenic facility was developed and commissioned. In this overview, we describe the implementation of the recently completed instrument integration and testing campaign, delivering a well characterized imaging spectrometer to be integrated with the rest of the observatory.
The discovery of a fair sample of Earth-analogues (Earth 2.0’s), i.e. rocky, Earth-mass exoplanets orbiting a Solar-type star in that host star’s habitable zone, and a subsequent search of evidence of bioactivity on those Earth 2.0’s by the detection of biogenically produced molecules in those exoplanetary atmospheres, are two of the most urgent observational programs in astrophysics and science in general. To identify an Earth 2.0, it is necessary to measure the reflex motion radial velocity amplitude of the host star at the 10 cm/sec level, a precision considerably below that which is currently achievable with existing instruments. The follow-on project to search for the biomarkers in an Earth 2.0’s atmosphere may require an effective planet/star contrast of 10-10, again well below the currently achievable level. In this paper, we discuss technical innovations in the implementation of the GMT-Consortium Large Earth Finder (G-CLEF) spectrograph that will enable these observational objectives. We discuss plans to operate G-CLEF at the Magellan Clay telescope with the MagAO-X adaptive optics system and subsequently with GMagAO-X at the Giant Magellan Telescope (GMT).
This paper describes the deployment of the GMT-Consortium Large Earth Finder (G-CLEF) at the Clay telescope, one of the two Magellan telescopes, in late 2025, moving to the GMT in 2030. G-CLEF is a fiber-fed, ultra-high stability optical band echelle spectrograph designed for extremely precise stellar radial velocity measurement. On the Magellan Clay telescope, G-CLEF will take spectra with resolution up to ~300,000, fully resolving molecular spectral features and opening totally new discovery space for exoplanet atmosphere composition studies. G@M will also be coupled to the Magellan extreme adaptive optics facility, MagAO-X which will allow it to spatially resolve several exoplanets from their host stars. We provide a system description of the G@M instrument as it will be configured at Magellan. A top-level review of optomechanics, electronics and control systems follows, as well as a description of several risk-reduction exercises the team has undertaken.
MANIFEST is a multi-object fibre facility for the Giant Magellan Telescope that uses ‘Starbug’ robots to accurately position fibre units across the telescope’s focal plane. MANIFEST, when coupled to the telescope’s planned seeinglimited instruments, offers access to larger fields of view; higher multiplex gains; versatile focal plane reformatting of the focal plane via integral-field-units; image-slicers; and in some cases higher spatial and spectral resolution. The TAIPAN instrument on the UK Schmidt Telescope is now close to science verification which will demonstrate the feasibility of the Starbug concept. We are now moving into the conceptual development phase for MANIFEST, with a focus on developing interfaces for the telescope and for the instruments.
The NISS (Near-infrared Imaging Spectrometer for Star formation history) have been developed by KASI as one of the scientific payloads onboard the first small satellite of NEXTSat program (NEXTSat-1) in Korea. The both imaging and low spectral resolution spectroscopy in the wide near-infrared range from 0.95 to 2.5µm and wide field of view of 2° x 2° is a unique capability of the NISS for studying the star formation in local and distant Universe. In the design of the NISS, special care was taken by implementing the off-axis system to increase the total throughput with limited resources from the small satellite. We confirmed that the mechanical structure of the NISS could be maintained in space through passive cooling of the telescope. To operate the infrared detector and spectral filters at 80K stage, the compact dewar module was assembled after the relay-lens module. The integrations of relay-lens part, primary-secondary mirror assembly and dewar module were independently performed, which alleviated the complex alignment process. The telescope and infrared sensor were validated for the operation at cryogenic temperatures of around 200K and 80K, respectively. The system performance of the NISS, such as focus, cooling efficiency, wavelength calibration and system noise, was evaluated by utilizing our constructed test facility. After the integration into the NEXTSat-1, the flight model of the NISS was tested under the space environments. The NISS is scheduled to be launched in late 2018 and it will demonstrate core technologies related to the future infrared space telescope in Korea.
The GMT-Consortium Large Earth Finder (G-CLEF) is an instrument that is being designed to exceed the state-of-the-art radial velocity (RV) precision achievable with the current generation of stellar velocimeters. It is simultaneously being designed to enable a wide range of scientific programs, prominently by operating to blue wavelengths (< 3500Å). G-CLEF will be the first light facility instrument on the Giant Magellan Telescope (GMT) when the GMT is commissioned in 2023. G-CLEF is a fiber-fed, vacuum-enclosed spectrograph with an asymmetric white pupil echelle design. We discuss several innovative structural, optical and control system features that differentiate G-CLEF from previous precision RV instruments.
NISS (Near-infrared Imaging Spectrometer for Star formation history) is a unique spaceborne imaging spectrometer (R = 20) onboard the Korea’s next micro-satellite NEXTSat-1 to investigate the star formation history of Universe in near infrared wavelength region (0.9 – 2.5 μm). In this paper, we introduce the NISS H2RG detector electronics, the test configuration, and the performance test results. Analyzed data will be presented on; system gain, dark current, readout noise, crosstalk, linearity, and persistence. Also, we present basic test results of a Korean manufactured IR detector, 640 x 512 InAsSb 15 μm pixel pitch, developed for future Korean lunar mission.
The Korea Astronomy and Space Science Institute has developed NISS (Near-infrared Imaging Spectrometer for Star formation history) as a scientific payload for the first next generation of small satellite, NEXTSat-1 in Korea. NISS is a NIR imaging spectrometer exploiting a Linear Variable Filter (LVF) in the spectral passband from 0.95 um to 2.5 um and with low spectral resolution of 20. Optical system consists of 150mm aperture off-axis mirror system and 8-element relay-lenses providing a field of view of 4 square degrees. Primary and secondary aluminum mirrors made of RSA6061 are precisely fabricated and all of the lenses are polished with infrared optics materials. In principle, the optomechanical design has to withstand the vibration conditions of the launcher and maintain optical performance in the space environment. The main structure and optical system of the NISS are cooled down to about 200K by passive cooling for our astronomical mission. We also cool the detector and the LVF down to about 90K by using a small stirling cooler at 200K stage. The cooling test for whole assembled body has shown that the NISS can be cooled down to 200K by passive cooling during about 80 hours. We confirmed that the optomechanical structure is safe and rigid enough to maintain the system performance during the cooling, vibration and thermal vacuum test. After the integration of the NISS into the NEXTSat-1, space environmental tests for the satellite were passed. In this paper, we report the design, fabrication, assembly and test of the optomechanical structure for the NISS flight model.
Korea Astronomy and Space Science Institute (KASI) successfully developed the Near-infrared Imaging Spectrometer for Star formation history (NISS), which is a scientific payload for the next-generation small satellite-1 (NEXTSat-1) in Korea and is expected to be launched in 2018. The major science cases of NISS are to probe the star formation in local and early Universe through the imaging spectroscopic observations in the near-infrared. The off-axis catadioptric optics with 150mm aperture diameter is designed to cover the FoV of 2x2 deg with the passband of 0.95-2.5μm. The linear variable filter (LVF) is adopted as a disperse element with spectral resolution of R~20. Given the error budgets from the optical tolerance analysis, all spherical and non-spherical surfaces were conventionally polished and finished in the ultraprecision method, respectively. Primary and secondary mirrors were aligned by using interferometer, resulting in residual wave-front errors of P-V 2.7μm and RMS 0.61μm, respectively. To avoid and minimize any misalignment, lenses assembled were confirmed with de-centering measurement tool from Tri-Optics. As one of the key optical design concepts, afocal beam from primary and secondary mirrors combined made much less sensitive the alignment process between mirrors and relay lenses. As the optical performance test, the FWHM of PSF was measured about 16μm at the room temperature, and the IR sensor was successfully aligned in the optimized position at the cryogenic temperature. Finally, wavelength calibration was executed by using monochromatic IR sources. To support the complication of optical configuration, the opto-mechanical structure was optimized to endure the launching condition and the space environment. We confirmed that the optical performance can be maintained after the space environmental test. In this paper, we present the development of optical system of NISS from optical design to performance test and calibration.
Korea Astronomy and Space Science Institute (KASI) has been developing the Camera Lens System (CLS) for the Total Solar Eclipse (TSE) observation. In 2016 we have assembled a simple camera system including a camera lens, a polarizer, bandpass filters, and CCD to observe the solar corona during the Total Solar Eclipse in Indonesia. Even we could not obtain the satisfactory result in the observation due to poor environment, we obtained some lessons such as poor image quality due to ghost effect from the lens system. For 2017 TSE observation, we have studied and adapted the compact coronagraph design proposed by NASA. The compact coronagraph design dramatically reduces the volume and weight and can be used for TSE observation without an external occulter which blocks the solar disk. We are in developing another camera system using the compact coronagraph design to test and verify key components including bandpass filter, polarizer, and CCD, and it will be used for the Total Solar Eclipse (TSE) in 2017. We plan to adapt this design for a coronagraph mission in the future. In this report we introduce the progress and current status of the project and focus on optical engineering works including designing, analyzing, testing, and building for the TSE observation.
The GMT-Consortium Large Earth Finder (G-CLEF) is a fiber-fed, optical echelle spectrograph selected as the first light instrument for the Giant Magellan Telescope (GMT) now under construction at the Las Campanas Observatory in Chile. G-CLEF has been designed to be a general-purpose echelle spectrograph with precision radial velocity (PRV) capability for exoplanet detection. The radial velocity (RV) precision goal of G-CLEF is 10 cm/sec, necessary for detection of Earth-sized exoplanets. This goal imposes challenging stability requirements on the optical mounts and the overall spectrograph support structures especially when considering the instrument’s operational environment. The accuracy of G-CLEF’s PRV measurements will be influenced by minute changes in temperature and ambient air pressure as well as vibrations and micro gravity-vector variations caused by normal telescope slewing. For these reasons we have chosen to enclose G-CLEF’s spectrograph in a well-insulated, vibration isolated vacuum chamber in a gravity invariant location on GMT’s azimuth platform. Additional design constraints posed by the GMT telescope include: a limited space envelope, a thermal emission ceiling, and a maximum weight allowance. Other factors, such as manufacturability, serviceability, available technology and budget are also significant design drivers. All of the above considerations must be managed while ensuring performance requirements are achieved. In this paper, we discuss the design of G-CLEF’s optical mounts and support structures including the choice of a low coefficient of thermal expansion (CTE) carbon-fiber optical bench to minimize the system’s sensitivity to thermal soaks and gradients. We discuss design choices made to the vacuum chamber geared towards minimize the influence of daily ambient pressure variations on image motion during observation. We discuss the design of G-CLEF’s insulated enclosure and thermal control systems which will maintain the spectrograph at milli-Kelvin level stability while simultaneously limiting thermal emissions into the telescope dome. Also discussed are micro gravity-vector variations caused by normal telescope slewing, their uncorrected influence on image motion, and how they are dealt with in the design. Finally, we discuss G-CLEF’s front-end assembly and fiber-feed system as well as other interface challenges presented by the telescope, enclosure and neighboring instrumentation.
The GMT-Consortium Large Earth Finder (G-CLEF) is the very first light instrument of the Giant Magellan Telescope (GMT). The G-CLEF is a fiber feed, optical band echelle spectrograph that is capable of extremely precise radial velocity measurement. KASI (Korea Astronomy and Space Science Institute) is responsible for Flexure Control Camera (FCC) included in the G-CLEF Front End Assembly (GCFEA). The FCC is a kind of guide camera, which monitors the field images focused on a fiber mirror to control the flexure and the focus errors within the GCFEA. The FCC consists of five optical components: a collimator including triple lenses for producing a pupil, neutral density filters allowing us to use much brighter star as a target or a guide, a tent prism as a focus analyzer for measuring the focus offset at the fiber mirror, a reimaging camera with three pair of lenses for focusing the beam on a CCD focal plane, and a CCD detector for capturing the image on the fiber mirror. In this article, we present the optical and mechanical FCC designs which have been modified after the PDR in April 2015.
The GMT-Consortium Large Earth Finder (G-CLEF) will be a cross-dispersed, optical band echelle spectrograph to be delivered as the first light scientific instrument for the Giant Magellan Telescope (GMT) in 2022. G-CLEF is vacuum enclosed and fiber-fed to enable precision radial velocity (PRV) measurements, especially for the detection and characterization of low-mass exoplanets orbiting solar-type stars. The passband of G-CLEF is broad, extending from 3500Å to 9500Å. This passband provides good sensitivity at blue wavelengths for stellar abundance studies and deep red response for observations of high-redshift phenomena. The design of G-CLEF incorporates several novel technical innovations. We give an overview of the innovative features of the current design. G-CLEF will be the first PRV spectrograph to have a composite optical bench so as to exploit that material’s extremely low coefficient of thermal expansion, high in-plane thermal conductivity and high stiffness-to-mass ratio. The spectrograph camera subsystem is divided into a red and a blue channel, split by a dichroic, so there are two independent refractive spectrograph cameras. The control system software is being developed in model-driven software context that has been adopted globally by the GMT. G-CLEF has been conceived and designed within a strict systems engineering framework. As a part of this process, we have developed a analytical toolset to assess the predicted performance of G-CLEF as it has evolved through design phases.
The NISS (Near-infrared Imaging Spectrometer for Star formation history) is the near-infrared instrument optimized to the first next generation of small satellite (NEXTSat-1) in Korea. The spectro-photometric capability in the near-infrared range is a unique function of the NISS. The major scientific mission is to study the cosmic star formation history in local and distant universe. For those purposes, the NISS will perform the large areal imaging spectroscopic survey for astronomical objects and low background regions. We have paid careful attention to reduce the volume and to increase the total throughput. The newly implemented off-axis optics has a wide field of view (2° x 2°) and a wide wavelength range from 0.9 to 3.8μm. The mechanical structure is designed to consider launching conditions and passive cooling of the telescope. The compact dewar after relay-lens module is to operate the infrared detector and spectral filters at 80K stage. The independent integration of relay-lens part and primary-secondary mirror assembly alleviates the complex alignment process. We confirmed that the telescope and the infrared sensor can be cooled down to around 200K and 80K, respectively. The engineering qualification model of the NISS was tested in the space environment including the launch-induced vibration and shock. The NISS will be expected to demonstrate core technologies related to the development of the future infrared space telescope in Korea.
The GMT-Consortium Large Earth Finder (G-CLEF) is an echelle spectrograph with precision radial velocity (PRV) capability that will be a first light instrument for the Giant Magellan Telescope (GMT). G-CLEF has a PRV precision goal of 40 cm/sec (10 cm/s for multiple measurements) to enable detection of Earth-like exoplanets in the habitable zones of sun-like stars1. This precision is a primary driver of G-CLEF’s structural design. Extreme stability is necessary to minimize image motions at the CCD detectors. Minute changes in temperature, pressure, and acceleration environments cause structural deformations, inducing image motions which degrade PRV precision. The instrument’s structural design will ensure that the PRV goal is achieved under the environments G-CLEF will be subjected to as installed on the GMT azimuth platform, including:
Millikelvin (0.001 °K) thermal soaks and gradients
10 millibar changes in ambient pressure
Changes in acceleration due to instrument tip/tilt and telescope slewing
Carbon fiber/cyanate composite was selected for the optical bench structure in order to meet performance goals. Low coefficient of thermal expansion (CTE) and high stiffness-to-weight are key features of the composite optical bench design. Manufacturability and serviceability of the instrument are also drivers of the design.
In this paper, we discuss analyses leading to technical choices made to minimize G-CLEF’s sensitivity to changing environments. Finite element analysis (FEA) and image motion sensitivity studies were conducted to determine PRV performance under operational environments. We discuss the design of the optical bench structure to optimize stiffness-to-weight and minimize deformations due to inertial and pressure effects. We also discuss quasi-kinematic mounting of optical elements and assemblies, and optimization of these to ensure minimal image motion under thermal, pressure, and inertial loads expected during PRV observations.
The GMT-Consortium Large Earth Finder (G-CLEF) is an optical-band echelle spectrograph that has been selected as
the first light instrument for the Giant Magellan Telescope (GMT). G-CLEF is a general-purpose, high dispersion
spectrograph that is fiber fed and capable of extremely precise radial velocity measurements. The G-CLEF Concept
Design (CoD) was selected in Spring 2013. Since then, G-CLEF has undergone science requirements and instrument
requirements reviews and will be the subject of a preliminary design review (PDR) in March 2015. Since CoD review
(CoDR), the overall G-CLEF design has evolved significantly as we have optimized the constituent designs of the major
subsystems, i.e. the fiber system, the telescope interface, the calibration system and the spectrograph itself. These
modifications have been made to enhance G-CLEF’s capability to address frontier science problems, as well as to
respond to the evolution of the GMT itself and developments in the technical landscape. G-CLEF has been designed by
applying rigorous systems engineering methodology to flow Level 1 Scientific Objectives to Level 2 Observational
Requirements and thence to Level 3 and Level 4. The rigorous systems approach applied to G-CLEF establishes a well
defined science requirements framework for the engineering design. By adopting this formalism, we may flexibly update
and analyze the capability of G-CLEF to respond to new scientific discoveries as we move toward first light. G-CLEF
will exploit numerous technological advances and features of the GMT itself to deliver an efficient, high performance instrument, e.g. exploiting the adaptive optics secondary system to increase both throughput and radial velocity
measurement precision.
Since the end of 2012, Korea Astronomy and Space Science Institute (KASI) has been developed the Near-infrared
Imaging Spectrometer for Star formation history (NISS), which is a payload of the Korean next small satellite 1
(NEXTSat-1) and will be launched in 2017. NISS has a cryogenic system, which will be cooled down to around 200K by
a radiation cooling in space. NISS is an off-axis catadioptric telescope with 150mm aperture diameter and F-number 3.5,
which covers the observation wavelengths from 0.95-3.8μm by using the linear variable filter (LVF) for the near infrared
spectroscopy. The entire field of view is 2deg x 2deg with 7arcsec pixel scale. Optics consists of two parabolic primary
and secondary mirrors and re-imaging lenses having 8 elements. The main requirement for the optical performance is
that the RMS spot diameters for whole fields are smaller than the detector pixel, 18μm. Two LVFs will be used for 0.9-
1.9μm and 1.9-3.8μm, whose FWHM is more than 2%. We will use the gold-coated aluminum mirrors and employ the
HgCdTe 1024x1024 detector made by Teledyne. This paper presents the conceptual opto-mechanical design of NISS.
Multi-purpose Infra-Red Imaging System (MIRIS) is a near-infrared camera onboard on the Korea Science and
Technology Satellite 3 (STSAT-3). The MIRIS is a wide-field (3.67° × 3.67°) infrared imaging system which employs a
fast (F/2) refractive optics with 80 mm diameter aperture. The MIRIS optics consists of five lenses, among which the
rear surface of the fifth lens is aspheric. By passive cooling on a Sun-synchronous orbit, the telescope will be cooled
down below 200 K in order to deliver the designed performance. As the fabrication and assembly should be carried out
at room temperature, however, we convert all the lens data of cold temperature to that of room temperature. The
sophisticated opto-mechanical design accommodates the effects of thermal contraction after the launch, and the optical
elements are protected by flexure structures from the shock (10 G) during the launch. The MIRIS incorporates the wide-band
filters, I (1.05 μm) and H (1.6 μm), for the Cosmic Infrared Background observations, and also the narrow-band
filters, Paα (1.876 μm) and a specially designed dual-band continuum, for the emission line mapping of the Galactic
interstellar medium. We present the optical design, fabrication of components, assembly procedure, and the performance
test results of the qualification model of MIRIS near-infrared camera.
Multi-purpose Infra-Red Imaging System (MIRIS) is the main payload of the Korea Science and Technology Satellite-3
(STSAT-3), which is being developed by Korea Astronomy & Space Science Institute (KASI). MIRIS is a small space
telescope mainly for astronomical survey observations in the near infrared wavelengths of 0.9~2 μm. A compact wide
field (3.67 x 3.67 degree) optical design has been studied using a 256 x 256 Teledyne PICNIC FPA IR sensor with a
pixel scale of 51.6 arcsec. The passive cooling technique is applied to maintain telescope temperature below 200 K with
a cold shutter in the filter wheel for accurate dark calibration and to reach required sensitivity, and a micro stirling cooler
is employed to cool down the IR detector array below 100K in a cold box. The science mission of the MIRIS is to
survey the Galactic plane in the emission line of Paschen-α (Paα, 1.88 μ;m) and to detect the cosmic infrared background
(CIB) radiation. Comparing the Paα map with the Hα data from ground-based surveys, we can probe the origin of the
warm-ionized medium (WIM) of the Galaxy. The CIB is being suspected to be originated from the first generation stars
of the Universe and we will test this hypothesis by comparing the fluctuations in I (0.9~1.2 um) and H (1.2~2.0 um)
bands to search the red shifted Lyman cutoff signature. Recent progress of the MIRIS imaging system design will be
presented.
MIRIS is a compact near-infrared camera with a wide field of view of 3.67°×3.67° in the Korea Science and
Technology Satellite 3 (STSAT-3). MIRIS will be launched warm and cool the telescope optics below 200K by pointing
to the deep space on Sun-synchronous orbit. In order to realize the passive cooling, the mechanical structure was
designed to consider thermal analysis results on orbit. Structural analysis was also conducted to ensure safety and
stability in launching environments. To achieve structural and thermal requirements, we fabricated the thermal shielding
parts such as Glass Fiber Reinforced Plastic (GFRP) pipe supports, a Winston cone baffle, aluminum-shield plates, a
sunshade, a radiator and 30 layers of Multi Layer Insulation (MLI). These structures prevent the heat load from the
spacecraft and the earth effectively, and maintain the temperature of the telescope optics within operating range. A micro
cooler was installed in a cold box including a PICNIC detector and a filter-wheel, and cooled the detector down to a
operating temperature range. We tested the passive cooling in the simulated space environment and confirmed that the
required temperature of telescope can be achieved. Driving mechanism of the filter-wheel and the cold box structure
were also developed for the compact space IR camera. Finally, we present the assembly procedures and the test result for
the mechanical parts of MIRIS.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.