As a key component in the laser system, contamination damage to the multilayer dielectric film reflector significantly limits the safe operation of the laser system. Stray light irradiation of the system on the metal structural components produced by the sputtering material is the main source of reflector surface contaminants. Mastery of stray light-induced contaminants behavior is essential for solving the problem of reflector contamination damage. In this study, the real process of sputtering contaminants induced by stray light irradiation of aluminum alloy in sealed chambers is experimentally simulated. The morphological characteristics, composition, and distribution pattern of the contaminants deposited on the reflector surface were analyzed. The influence of various types of contaminants on the damage performance of the reflector was investigated. Scanning electron microscopy measurements showed that the presence of carbonaceous organic contaminants and metallic aluminum particles on the surface of the samples resulted in localized bonding behavior. One-to-one damage threshold measurements showed that the composite contaminants severely degraded the performance of the reflector. These results fundamentally explain the source and physicochemical properties of the contaminants on the reflector surface in the laser system, reveal the mechanism of stray light-induced contaminants on the damage performance of the multilayer dielectric film reflector, and provide a theoretical basis for the clean debugging of the sealing cavities and the design of enhanced stray light irradiation resistance of the aluminum alloy materials.
Plasma has been widely used in the in situ removal of organic contaminants on the surface of large aperture optical components by physical bombardment and chemical reaction. Since the plasma is usually generated by ionizing gas through the electric field, the charged reactive species are accelerated to bombard the surface when passing through the surface sheath. After the organic contaminants on the surface of the optical components are completely removed, the surface film of the optical components may be eroded by long-time plasma irradiation. Therefore, the surface damage characteristics induced by plasma cleaning on optical components were studied to apply the technology of plasma in situ cleaning in the inertial confinement fusion facilities. Firstly, the effect of the amount of organic contaminants on the performance of optical components was investigated. Then, the influence of plasma cleaning time on the transmittance and wavelength peak of fused quartz optical components coated with sol-gel anti-reflection film was analyzed. The plasma cleaning experiments illustrated that the film thickness had a damage accumulation effect after the long plasma irradiation, and the surface pores gradually increased. The surface damage mechanism of plasma action was discussed. Finally, the research on the surface damage mechanism of sol-gel anti-reflective film during plasma cleaning lays a foundation for the realization of nondestructive in situ cleaning of optical components.
The surface of the gold film grating appeared to different degrees of carbon burning phenomenon under high energy laser irradiation, which resulted in the degradation of the grating performance. Thus, in this study, the main components and relative contents of organic contaminants in the wall and air at different positions in the chirped pulse amplification system were detected by gas chromatography and mass spectrometry. The organic molecules were volatilized from potential sources such as components and pump oil or dust produced by stray light irradiation of carbon-based materials. The contaminant C12H38O5Si6 was found at multiple sampling sites, indicating that the hydrocarbon molecules in the contaminant formed a chemical bond with the molecular structure of silicon and oxygen on the surface of the optical component. Compared to physical adsorption, this chemical bond adsorption is stronger and more difficult to remove. The effect of long-term vacuum organic contamination on the diffraction efficiency of the gold grating was not significant enough. On the contrary, organic residual contaminants were formed in the laser-irradiated area of the surface of the gold grating, and the diffraction efficiency was significantly reduced to two-thirds of the undamaged area. Many small organic molecules, particles and water molecules were deposited in the grooves on the surface of the gold grating, and carbonization occurs under the action of ultra-short pulse laser. A stress pit appeared in the center area of laser irradiation, causing damage to the surface of the grating.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.