Recently, Multi-Beam Mask Writer (MBMW) scheme is newly considered for next generation writing scheme. As the
MBMW writing uses many multi-array bundle beams with small spot size, the fast writing and complex pattering is
possible conceptually.
The target dose level of MBMW is high around 100μC/cm2 and the target of total writing time is within 10 hours for
next generation layout with complex and small node pattern. The risks of high dose writing are rising of blank
temperature, chemical reaction with photo-resist and charging effects in blank. In addition, the fast writing can cause the
rising of temperature in blank.
The heating effect can be divided into local and global terms, and each effect of critical dimension (CD) and
registration was analyzed by heating effect. In case of MBMW, the global heating is more critical than local heating.
Therefore, we need to study about the global heating effect which can affect global registration in MBMW.
In this paper, we study about the global heat distribution on mask blank in certain MBMW writing condition, and the
directional deformation of blank which can affect global registration was analyzed by using Finite Element Method
(FEM). We approach with two kinds of modified heat model and the FEM model was verified with analytical calculation.
The temperature variation and deformation distribution were achieved with transient method with the writing
conditions, in case of 100μC/cm2 of total dose, 50kV of acceleration voltage, 100% of chip density and 10 hour of total writing time. Therefore, we can consider the writing conditions according to mask specification in MBMW scheme.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.