This will count as one of your downloads.
You will have access to both the presentation and article (if available).
Additions to the OPC model include accounting for anamorphic effects in the optics, mask electromagnetics, and mask manufacturing. The correction algorithm is updated to include awareness of anamorphic mask geometry for mask rule checking (MRC). OPC verification through process window conditions is enhanced to test different wafer scale mask error ranges in the horizontal and vertical directions.
This work will show that existing models and methods can be updated to support anamorphic optics without major changes. Also, the larger mask size in the Y direction can result in better model accuracy, easier OPC convergence, and designs which are more tolerant to mask errors.
While the EPE from variation in aberrations across the exposure field is correctable in OPC software, there are no known ways to address tool-to-tool aberration variation. Given that foundries are expected to have multiple EUV tools for high volume manufacturing, the degree of tool-matching between different machines is expected to play a critical role to the success of EUV. This work seeks to further the study by quantifying the simulated edge placement error on realistic 7 nm / 5 nm node designs resulting from a fleet consisting of multiple EUV tools, under the assumption of single OPC model / mask for multiple tools and whether such assumptions are valid. Given the importance of tool-to-tool aberration matching in EUVL, this study investigates the amount of variation in tool-to-tool aberration that can be tolerated before foundries must consider tool dedicated OPC mask sets. This study statistically analyzes different metrics such as EPEs, image shifts and worst case excursions to understand which single tool in the fleet should be best used in model calibration to generate the OPC mask shapes. In addition, an effort to rank relative quality of the verification solutions is investigated, to be used to tool allocation.
View contact details
No SPIE Account? Create one